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Heart diseases, especially acute coronary syndrome (ACS), are among the most severe illnesses that often lead to death. Despite
significant advances in the prevention and treatment of ACS, the incidence of the disease and its complications are very serious. The
imbalance between pro- and antioxidant systems, the formation of active carbonyl compounds, and the end products of glycation in
the blood and tissues are the key moments in the development of heart and neurological disorders leading to a change of behavioral
responses. So, the search for antioxidants with cardio- and neuroprotective effects is an urgent task. This study was aimed at
evaluating the effects of Corvitin and 2-oxoglutarate on physiological parameters, heart histology, and markers of carbonyl/oxidative
stress of rats with pituitrin-isoproterenol-induced myocardial damage (PIMD). Increased sweating, tachycardia, significantly de-
creased locomotor and exploratory activity, changes of ECG, heart histology, and biochemical changes were observed in the PIMD-
group. The administration of Corvitin or 2-OG led to the recovery of locomotor and cognitive activities of the rats, improvement in
heart histology, a decrease in the levels of thiobarbituric acid reactive substances, advanced glycated end products, and various
changes in the activity of the antioxidant enzymes, 6 days after PIMD. So, Corvitin and exogenous 2-OG show cardio- and
neuroprotective effects through the decrease of carbonyl/oxidative stress and regulation of the activity of the antioxidant system.

1. Introduction

Cardiovascular diseases (CVDs), notably, acute coronary
syndromes (ACS), are among the most severe illnesses that
often lead to death. According to the forecast of the World
Health Organization, these diseases are projected to dom-
inate as the primary cause of death by 2020 [1]. Despite
significant advances in the prevention and treatment of
CVD, the incidence of the diseases and their complications
remain high. According to unofficial statistical data, more
than 580 thousand people died for various reasons
throughout 2016-2017 in Ukraine, with one-third of them
dying from heart and blood vessel diseases [2, 3]. Thus, the
search for drugs that have metabolically grounded car-
dioprotective properties is topical.

Among the well-known factors that trigger the devel-
opment of coronary heart disease are discussed reactive
oxygen species (ROS) and other free radicals, which attack
lipids containing unsaturated fatty acids, mediating the chain
of reactions of lipid peroxidation [4, 5]. Processes of lipid
peroxidation (LPO) lead to disruption of the structure and
permeability of cardiomyocyte membranes and to the
changes of their metabolism [6]. Furthermore, LPO plays an
important role in atherogenesis through oxidation of low-
density lipoprotein phospholipids, which have proin-
flammatory and proatherogenic properties [7]. Intense of
lipid peroxidation and the degree of cell damage have been
shown to be highly dependent on the activity of antioxidant
enzymes. The imbalance between pro- and antioxidant sys-
tems in cells of the heart muscle and vascular endothelium is
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the crucial point of oxidative stress and is accompanied by the
activation of signaling pathways responsible for gene ex-
pression of proinflammatory and proapoptotic proteins,
creating conditions for the development of acute myocardial
infarction [8, 9]. Oxidative stress is also associated with the
appearance of active carbonyl compounds, which modify
proteins, nucleic acids, and other amino compounds with
formation of advanced glycation end products (AGEs) [10].
Traditionally, the process of nonenzymatic glycation was
associated with prolonged diabetic hyperglycemia. Advanced
glycation end products are linked to the development of
various complications of diabetes, including cardiorenal
syndrome [11], but the role of the AGEs in nondiabetic heart
damages is unclear. The evaluation of oxidative and carbonyl
stress markers under experimental myocardial ischemia can
provide additional information on the molecular mechanisms
of development of CVD.

Epidemiological studies have shown that 30% to 50% of
acute myocardial infarctions are the results of an emotional
provocation [12], which leads to changes in the behavior of
the patients. These changes are not only pain inflicted but are
also caused by the damage of stellate ganglions, as well as by
the dysfunction of ionic channels of the brain and heart
[13, 14]. The extensive oxidative metabolism due to ischemic
attack is accompanied by a concomitant generation of high
amounts of reactive oxygen, nitrogen, and carbonyl species
in the brain [15] So, the study of the behavioral reactions
under conditions of myocardial damage are potentially
useful in predicting possible neuronal complications, in
monitoring the efficacy, and in choosing the more rational
therapy. The application of a universally accepted medical
treatment including p-blockers, anticoagulants, antith-
rombotic agents, and nitrates in some cases gives no an-
ticipated results. Several antioxidants have been tested for
their possible cardio- and neuroprotective actions against
hypoxia-induced diseases; bioflavonoid quercetin is the
most popular among them. Quercetin is used for prevention
and treatment of cardiovascular and neurological disorders
[16-18] owing to its ability to inhibit ROS production and
the activity of oxidative enzymes (lipoxygenase and xanthine
oxidase), suppress inflammatory processes, and regulate the
content of nitric oxide [19, 20]. However, poor intestinal
solubility and absorption, as well as rapid neutralization
after oral administration—the “flavonoid paradox”
[21, 22]—limit the bioavailability of this bioflavonoid.
Currently, Corvitin—a water-soluble form of quercetin for
intravenous injections—is used as a drug with a pronounced
antiischemic, antistroke, and antiinfarction activity [23, 24].
Corvitin has a high bioavailability with a sufficiently low
level of toxicity [25]. It has been shown that cardioprotective
properties of Corvitin could be attributed to its ability to
alter the activity of proteolytic enzymes [26, 27], but the
effect of this drug on the state of the heart muscle and the
markers of carbonyl-oxidative stress have not been ade-
quately studied.

Another group of cardioprotective medications is based
on their ability to improve the energy metabolism in
a postischemic heart [28, 29]. 2-Oxoglutarate (2-OG, also
known as alpha-ketoglutarate) is among these substances. As
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a central metabolite of the Krebs cycle, it contributes to the
regulation of anabolic and catabolic reactions of the TCA
products and substrates, thereby regulating amino acid
synthesis, ATP production, and reducing equivalent (NAD"/
NADH) generation, which in turn can influence ROS levels
[30, 31]. Previous data suggest that in different cases of in-
duced oxidative stress in vitro or in vivo, 2-OG stabilizes redox
homeostasis and improves arterial elasticity in aged mice [32].
However, the impacts of this substance on the morphology
and metabolism of the heart, as well as on redox balance, after
an ischemic attack is poorly understood. The purpose of this
work was to evaluate the effect of Corvitin and 2-oxoglutarate
on physiological parameters, behavioral reactions, the activity
of antioxidative enzymes, and the content of advanced gly-
cated products under experimental myocardial damage in
rats.

2. Materials and Methods

2.1. Animals. The care and use of animals was conducted in
compliance with the principles outlined in the Guide of the
Care and Use of Experimental Animals in accordance with
the ethical standards established by the Ukrainian law no.
3447-1V, dated 21.02.06 “On the protection of animals from
cruelty,” and it was approved by the Local Ethics Review
Committee on Animal Experiments in Dnipropetrovsk
Medical Academy (Dnipro, Ukraine). Wistar male rats
weighing 195+ 50 g were exposed to standard conditions,
such as reverse 12-hour light-dark cycle (light 07:00-19:00)
and provided with laboratory nutrition and water ad libitum.

2.2. Reagents. All the reagents used in this study were clean
and chemically pure: sodium thiopental (ARTERIUM,
Ukraine); Corvitin (quercetin for intravenous injection and in
granules, Borshchahivskiy Chemical-Pharmaceutical Plant,
CJSC, Kiev, Ukraine); 2-oxoglutarate (SGPlus, Malmo,
Sweden); pituitrin (Endokrininiai, Lithuania); isoproterenol
(isoprenaline hydrochloride); alpha-amylase (A3176), oxi-
dized glutathione, 5,5'-dithiobis-2-nitrobenzoic acid, tetra-
methylenediamine, and bovine serum albumin were the
products from Sigma-Aldrich (St. Louis, MO, USA); quinine
hydrochloride (Buchler GmbH, Germany); thiobarbituric
acid (Kharkovreachim, Ukraine); reduced glutathione
(AppliChem GmbH, Germany); S-nicotinamide adenine
dinucleotide 2'-phosphate reduced tetrasodium salt hydrate
(Oriental yeast co., Ltd, Japan); Coomassie G250 (SERVA,
Germany); test system for determination of glucose and test
system for determining hemoglobin concentration were the
products of Phyllis-Diagnosis (Ukraine). All other chemicals
and solvents were at analytical grade level.

2.3. Mpyocardial Damage Model. The rat model of
isoproterenol-induced myocardial injury serves as a well-
accepted standardized model for the evaluation of several
cardiac dysfunctions and for studying the efficacy of various
natural and synthetic cardioprotective agents [33-35]. We
used the model proposed by Belenichev and others [36],
which follows the principle that the imbalance between the
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supply and the metabolic demand of oxygen by the heart
muscle is achieved by the combined administration of
pituitrin and isoproterenol. The drugs were administered as
follows: first, pituitrin (0.5 U/kg)—intraperitoneally, fol-
lowed by isoproterenol after 20 minutes (100 mg/kg)—
subcutaneously. The same injections of pituitrin and iso-
proterenol were repeated 6h and 24 h later.

2.4. Experimental Protocol. Animals were randomly divided
into four groups, ten rats in each group. Group 1 (control
animals) received saline injections (1 ml/kg) for 5 days; group
2 animals underwent pituitrin-isoproterenol myocardial
damage (PIMD); group 3 rats received intra-abdominally the
Corvitin (42 mg/kg) for 5 days after PIMD onset (day 1: three
doses at intervals 1, 2, and 12 hours; days 2 and 3: two doses
within 12 hours of each; and days 4 and 5: one dose 24 hours
apart). The animals were removed from the experiment a day
after the last injection of Corvitin. Group 4 animals received
1% solution of 2-oxoglutarate in drinking water ad libitum for
6 days after PIMD onset. Each animal consumed in average 5-
6 ml of 2-OG solution per day.

2.5. Monitoring Physiological Parameters of the Experimental
Animals. The physiological state (weight, respiration, motor
activity, and heart rate) of the animals was under constant
control during the experiment. The heart functioning was
evaluated using ECG recordings and analyzed with the
computer cardio complex, CardioLab 2000 (Ukraine). Be-
havioral responses of rats were examined with the Buresh
open-field test [37], using a white painted plywood floor
(80x80cm) divided by black lines into 16 squares
(2020 cm) and elevated 50 cm above the ground. Holes
(n = 9) were situated at the intersection of the four internal
squares (d=4cm). Rats were placed in one corner and di-
rected to the center. Videos of their behaviors were recorded
for 3 minutes. To prevent the rats from being distracted, the
field surface was treated with 70% ethanol solution after each
animal test. Evaluations were made for the number of lines
crossed, vertical stands, hole-looking, and defecation by each
animal. This approach allows for simultaneous exploration
of locomotion, exploratory activity, and the autonomic-
emotional state of animals. This test was carried out in
the light cycle phase at the beginning of the experiment, 24
hours after PIMD, and on the 6th day of 2-OG and Corvitin
administration.

2.6. Histopathological Studies. At the end of the experiment,
the animals were sacrificed using sodium thiopental
(40 ug/kg) and decapitated following the ethical standards.
Rat hearts were harvested and fixed in 10% formalin buffered
in PBS (pH=7.4) for 24 hours at room temperature,
dehydrated in increasing concentrations of isopropanol,
cleared in xylene, and embedded in paraffin. At least four
5 ym thick slices were obtained from each specimen for the
histological study of the structural changes in the left
ventricle myocardium. Two series of sections were then
stained with Periodic Acid Schiff Staining Technique (PAS)

[38] for glycogen detection: one set was preincubated with
diastase and then stained, while the other was stained
without diastase pretreatment. All sections were evaluated
repeatedly by two independent observers using the light
microscopy. Two characteristics for histological evaluation
identified as the most common for all groups were used:
inflammatory infiltration and PAS-staining intensity of
cardiomyocytes. All histological features were assessed in
nine different fields of view per specimen, at a magnification
of x400. The areas of view were chosen for the maximal
coverage of subepicardial, intramural, and subendocardial
layers of rat myocardium, thus aggregating three fields of
observation for one segment.

2.7. Biochemical Analysis. The plasma and red blood cells of
experimental animals were used for biochemical analysis.
Lipid peroxidation was estimated by measuring levels of
thiobarbituric acid reactive substances (TBARS) in plasma
by the spectrophotometric method [39]. The activity of the
antioxidant enzymes, such as superoxide dismutase (SOD),
catalase, glutathione peroxidase (GP), and glutathione re-
ductase (GR), was evaluated in hemolyzed erythrocytes. The
content of SOD was determined by calculating the speed of
auto-oxidation of quercetin in the presence of tetramethy-
lethylenediamine [40]; the activity of catalase was measured
by the reaction with ammonium molybdate [41]; the activity
of GP was deduced from the reaction between sulfhydryl
groups of reduced glutathione and Elman’s reagent [42]; and
the GR-activity was assessed by the NADPH-dependent
conversion of oxidized glutathione to its reduced form
[43]. The total protein content was determined by the
Bradford microassay [44].

2.8. AGEs. The levels of advanced glycated end products
(AGEs) were measured by quantitative fluorescence [45],
using Hoefer DQ 2000 Fluorometer (USA) with fixed
wavelengths  (excitation/emission = 365nm/460 nm).  The
fluorescent emission of plasma samples (10-fold diluted in
0.9% sodium saline) was measured at room temperature in a
1 cm quartz cuvette. The measurement results were expressed
in arbitrary units (AU) using quinine hydrochloride (60 mg/l)
as a standard solution, the fluorescence of which was taken as
1000 AU. The results of the measuring were comprised with
fluorescence of glycated albumin; their ratio was calculated
and used for evaluation of the AGEs content.

2.9. Statistical Analysis. Obtained data are represented as
mean + standard deviation of three independent de-
terminations, using Statistica 6.0 Software, Inc. Statistical
analysis was performed by the unpaired two-tailed Student’s
t-test and one-way analysis of variance (ANOVA). Values
with P <0.05 were considered statistically significant.

3. Results

3.1. Effects of Corvitin and 2-Oxoglutarate on Physiological
Indices of PIMD-Rats. Injections of isoproterenol and



pituitrin led to the deterioration of the physical condition
of experimental rats: polyuria, increased sweating, lethargy,
and tachycardia were observed. The weight of control and
experimental animals did not differ during the experiment
—200+20g. The heart rate (HR) was elevated on 20% in the
PIMD-rats, and its value significant decreased after the
treatment by Corvitin (on 13%) and 2-OG (on 15%) in
comparison with untreated animals (P < 0.001, Figure 1(a)).
Substantial changes in the ECG configuration occurred on the
6th day after the pituitrin-isoproterenol injections. The de-
tected changes were typical for ischemic myocardial injury;
reduction of R wave amplitude to 0.46+0.01mV (0.56 +
0.01 mV in control); and elevation of the ST segment to 1.81 +
0.10mm and its extension relative to the baseline. These
changes indicate damage to the anterior wall of the left
ventricle and disturbances of repolarization. Improvements in
the ECG configuration were noted in rats of the 3rd group after
the administration of Corvitin; the R wave amplitude increased
to values like those of the control group, and there was no ST-
segment elevation. A moderate amelioration of ECG was
observed in the group of animals treated with 2-OG. An R
wave amplitude recovery and a decreased ST segment were
detected, compared to the second group, although the ele-
vation of the S wave remained at 1.32 + 0.01 mm (Figure 1(b)).

3.2. Effects of Corvitin and 2-Oxoglutarate on the Behavior of
PIMD-Rats. Results of the open-field test showed changes in
the behavioral activity of animals after pituitrin-
isoproterenol-induced heart damage. The locomotor and
exploratory activity (intersecting square lines, hole-looking,
and the number of vertical racks) significantly decreased. On
the contrary, the number of boluses increased in this group
of rats compared to the control group. The administration of
Corvitin led to the recovery of locomotor and cognitive
activities of the experimental rats. The number of line-
crossing increased, as did the frequency of hole-looking,
and the number of vertical stands of the animals of this
group. The administration of 2-OG after the acquired
myocardial damage also led to a recovery in the animal
exploratory activity (vertical rack and hole-looking) and
reduced vegetative stress. Moreover, the animals were more
active (Figure 2).

3.3. Effects of Corvitin and 2-Oxoglutarate on Histopathologic
Changes Associated with PIMD in Rats. We found almost
identical histopathological changes in samples of the left
ventricular myocardium of all groups with PIMD, which
differed only in their severity and distribution within the
heart. These stereotypic changes comprised necrotic car-
diomyocytes and inflammatory infiltrates of perivascular
and interstitial localizations containing mostly lymphocytes,
histiocytes, monocytes, and some plasma cells. The minimal
signs of interstitial fibrosis were also noted. Additionally, the
hyperemia of the capillary bed and the separation of the
muscle tissue into bundles with swelled-up individual fibers
were observed in some samples of these groups. Vacuolated
cytoplasm and condensed dark-colored nuclei represented
necrotic patterns in cardiomyocytes. Staining by PAS-
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technik displayed an apparent depletion of glycogen
around heart attack-like lesions. It is important to note that
the distribution of these changes varied in the studied groups
in subendocardial, intramuscular, and subepicardial layers
of the myocardium (Figure 3).

Microscopic comparisons of left ventricles of rats of the
PIMD-group without Corvitin or 2-OG therapy revealed that
postischemic and postnecrotic alterations comprised the
highest depletion of glycogen in the sarcoplasm of car-
diomyocytes and the most severe inflammatory infiltrates,
located predominantly in the subepicardial layer. Perivascular
edema and interstitial fibrosis were recognized in all myo-
cardial segments of this group. The animals with PIMD
demonstrated that intramural formation of multiple small
foci tended to merge and consisted of lymphocyte-
macrophage infiltrates with single polymorphonuclear leu-
kocytes on the 6th day of follow-up. Besides focal infiltrates,
a diffused mononuclear infiltration of myocardial stroma was
observed, and the foci of necrotized cardiomyocytes were
found predominantly in the subepicardial layer.

Animals of the third investigated group that received
Corvitin after PIMD-induction presented less prominent
inflammatory changes in the myocardium; the number
of lymphocyte-macrophage infiltrates decreased, mostly
located at the subendocardial and subepicardial levels. The
foci of necrosis and myofibril destruction were randomly
characterized, and the manifestations of perivascular edema
and edema of the vascular wall also seemed insignificant.
Glycogen-rich areas were predominantly observed in the
intramural layer of the myocardium. The administration of
2-0OG, for 6 days, to PIMD-rats was characterized by
a significant decrease in inflammatory response and by
a mild increase in the glycogen content in cardiomyocytes.
The inflammation in the myocardium of these animals was
the least pronounced compared with the previously de-
scribed groups; it was spread all over the place. The changes
in the microvasculature were comparable to those in the
second group. The number of glycogen-rich cardiac myo-
cytes in that group was relatively higher than that in the
PIMD-group, but it was significantly less than the number in
control and in PIMD + Corvitin groups.

3.4. Effects of Corvitin and 2-Oxoglutarate on Indices of
Carbonyl/Oxidative Stress and Antioxidant Enzymes. Our
results showed that levels of TBARS and AGEs increased by
2.8 and 1.3 times, respectively, in the plasma of the animals
with PIMD compared to the control group (Figures 4(a) and
4(e)), and there is a correlation between these parameters
(r=0.61; P <0.05). The use of Corvitin and 2-OG for 6 days
instigated reductions in the contents of TBARS and AGEs, but
not to the level registered in the control group (Figure 4(e)).
It should be noted that the increase of AGEs in the
PIMD-group was accompanied by a rise in the glucose level to
6.03 +0.63 mmol/l compared to 4.71 +0.57mmol/l in the
control group. After the administration of Corvitin, glucose
level recovered to the standard value, and with the in-
troduction of 2-OG, it increased further than the level in the
PIMD-group (Figure 4(a)).
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Figure 1: Effects of Corvitin and 2-oxoglutarate on heart rate (a) and ECG (b) in experimental groups. 1, control group; 2, rats with
pituitrin-isoproterenol myocardial damage (PIMD); 3, rats with PIMD + Corvitin; 4, rats with PIMD +2-OG; ***P <0.001, compared to

control; ¥ P <0.001, compared to PIMD-group.

The combined administration of pituitrin-isoproterenol
also led to various changes in the activity of enzymes of the
antioxidant system. The most significant differences were
observed in enzymes that neutralize hydrogen peroxide. The
level of catalase in the blood plasma decreased almost three
times (P <0.001; Figure 4(b)), while the activity of gluta-
thione peroxidase in the red blood cells, by contrast, in-
creased 1.5 times (P <0.001; Figure 4(c)). The activity of
other enzymes in rats with PIMD changed slightly, with no
noticeable difference in comparison to the control group.
We only noted the tendency of the glutathione reductase
activity to decrease and a slight increase in the SOD level
(Figures 4(b) and 4(d)). The content and activity of all
studied enzymes increased in animals which received
Corvitin in comparison with PIMD-rats, except for SOD
whose level was lower than in both the PIMD-rats and
control group, while the use of 2-OG reduced the activity of
antioxidant enzymes to almost normal values. Interestingly,
the relation of glutathione peroxidase activity to those of
glutathione reductase (GP/GR index) was two times higher
in rats with PIMD, compared to the control group, and did
not change after the administration of Corvitin, while the
application of 2-OG resulted in a decreased GP/GR index in
comparison to the control group (Figure 4(f)).

4. Discussion

We investigated the effects of Corvitin and 2-oxoglutarate on
the physiology and histology of the heart, behavioral re-
actions, and markers of carbonyl/oxidative stress in rats with
amyocardial damage that was induced by the administration
of pituitrin and isoproterenol. Comparing our results with
the works of other researchers showed that the chosen
scheme of administration of these substances causes changes
in the physiological state of animals, in ECG and heart
histology, like the clinical manifestations of myocardial

infarction of humans [46-49]. The decrease in the glycogen
level in the survived cardiomyocytes around the necrotic
foci, observed in our study, agrees with the fact that oxygen
deprivation due to ischemia stimulates the mobilization of
glycogen and the generation of ATP. On the contrary, the
presence of reactive inflammatory infiltrates in the necrotic
regions contributes to an increase in free radicals,
strengthening their negative influence in these areas. Ap-
parently, increased inflammatory infiltration is associated
with development of necrotic changes. Therefore, the se-
verity of inflammatory response may indicate the propa-
gation of necrotized areas in the left ventricle [50, 51].

The pituitrin-isoproterenol-induced myocardial damage
relates to the development of carbonyl/oxidative stress and
imbalance in the antioxidant enzyme system. According to
our results, the level of SOD in the erythrocyte hemolysate
was virtually unchanged for 6 days after PIMD-induction,
possibly because most of the superoxide anion (O*7) was
already inactivated in the dismutation reactions. Opposite
changes in the activities of catalase and glutathione per-
oxidase, which we noted in the results, may be due to their
nonenzymatic glycation [52-54]. Our finding is consistent
with the data of other studies, in which the high sensitivity of
catalase to nonenzymatic glycation was demonstrated,
leading to a decrease in the activity of this enzyme with
aging, hyperglycemia, and carbonyl-oxidative stress. Glu-
tathione peroxidase, by contrast, has a low sensitivity to
active carbonyl compounds. According to data of Bakala
et al. [55], incubation of catalase with 5mM of fructose for
24 hours resulted in decrease of its activity more than three
times, while the activity of GP decreased only on 5% in the
similar conditions of the experiment [56]. Furthermore,
glutathione peroxidase can reduce the level of AGEs by
activating dihydroxyacetone kinase and reducing the di-
hydroxyacetone content—one of the most active carbonyl
compounds [57].
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The effects of Corvitin and 2-OG on the activity of the
antioxidant enzymes were similar, except for the activity of
glutathione-dependent enzymes and their ratio. Under the
influence of Corvitin, the increased GP/GR index persisted
and was two times higher than usual, while under the action
of 2-OG, this coeflicient decreased to almost regular values.
In our studies, the activity of GP and GR was evaluated in
erythrocytes, the metabolism of which is limited due to the
absence of cellular organelles, including mitochondria,
which produce endogenous 2-OG. Therefore, changes in the
activity of antioxidant enzymes under the action of exog-
enous 2-OG are most likely due to its antioxidative prop-
erties. These findings are in agreement with the observations
of other scientists [58, 59].

The use of both drugs caused positive dynamics of
morphological and functional changes in the damaged
myocardium, demonstrating their cardioprotective prop-
erties after PIMD. These functions were confirmed by in-
creased cardiomyocyte viability, decreased ischemic injury
(such as depression in the ST segment), faster heart rate

recovery, increased glycogen content, and reduced myo-
cardial inflammation in animals receiving Corvitin and 2-
OG. In addition to the general physiological correction and
cardioprotective effect, the drugs also incited an improve-
ment in locomotive and cognitive activities in rats. The
neuroprotective effect of quercetin and its derivatives has
been discussed previously regarding its antioxidative
properties. In our previous studies, an established regulatory
action of Corvitin on the metallothionein (MT) and glial
fibrillary acidic protein (GFAP) levels in various parts of the
brain was shown. It is known that GFAP is responsible for
the functional activity of astrocytes and nutrition of neurons,
while MT regulates gene expression and cell adaptation to
the stress factors [60]. Behavioral activation of rats with
PIMD after the treatment by 2-OG is the definitive result of
its multifactor impact on brain metabolism. It is well known
that 2-OG plays a crucial role in generating energy in nerve
cells through the TCA and respiratory chain in the mito-
chondria. Under conditions of ischemia-reperfusion in
PIMD-rats, the activities of the 2-OG dehydrogenase
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complex, which supplies NADH to the respiratory chain, as
well as of the first complex of this chain, are reduced [61, 62].
The diminished actions of these enzymes can be attributed to
the low levels of 2-OG used as the primary substrate for the
conversion of extra glutamate to glutamine under ischemic
conditions [63]. The results of this research serve as proof
that exogenous 2-OG in its neuroprotective role decreases
the levels of ROS and AGEs by regulating the activity of the
antioxidant system while improving energy supply levels by
restoring the diminished 2-OG. Thus, the protective effects

of Corvitin and 2-OG on myocardial damages, caused by
pituitrin-isoproterenol, are provided in many ways, in-
cluding their robust antioxidative capacity, as established in
our investigation.

5. Conclusion

Corvitin and exogenous 2-oxoglutarate provide cardio- and
neuroprotective protection through their ability to decrease
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Figure 4: Influence of Corvitin and 2-oxoglutarate on the level of AGE (a) and TBARS (e) and activity of antioxidant en-
zymes ((b-d), and (f)) in experimental groups. 1, control group; 2, rats with PIMD; 3, rats with PIMD + Corvitin; 4, rats with PIMD

+2-0G; *P<0.05, **P<0.01, and ***P <0.001, compared to control; IP <0.05, I[IP<0.01, and IIIP<0.001, compared to PIMD-
group.
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carbonyl/oxidative stress and regulate the activity of the
antioxidant system.
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