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Abstract

BACKGROUND: The effect of the potassium salt of nonafluorobutanesulfonic acid (C4F9SO3K) on the kinetic regularities of elec-
trodeposition of lead dioxide (PbO2) from nitrate electrolytes has been investigated. Obtained results concerning synthesis and
physicochemical properties can contribute substantially to a fundamental understanding of the relationship between coating
structure and catalytic activity, important to all fields of catalysis.

RESULTS: The introduction of C4F9SO3K into the PbO2 deposition electrolyte leads to insignificant inhibition of the Pb2+ electro-
oxidation process, whereas the mechanism of the process does not change. Upon deposition of coatings from electrolytes con-
taining surfactants, a composite coating is formed. Depending on the electrolyte composition and electrolysis conditions, the
surfactant content in the composite can vary from 2.00 ± 0.05 to 17.00 ± 0.05 wt%. The inclusion of surfactants in the coating
composition with subsequent overgrowth with PbO2 leads to a decrease in the size of PbO2 crystals and prevents the formation
of polycrystalline blocks. The composite material is a PbO2 matrix with submicron and nanoscale crystals into which surfactant
particles are embedded.

CONCLUSION: It was shown that the electrocatalytic activity of composite PbO2-surfactantmaterials depends on the nature and
content of the latter in the composite. The use of PbO2 dopedwith C4F9SO3K as an anode leads to an inhibition of the process of
oxygen evolution and an almost three-fold increase in the rate of electrochemical conversion of 4-chlorophenol to aliphatic
compounds.
© 2020 Society of Chemical Industry
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INTRODUCTION
Design and application of various coatings are now employed
extensively in modern electrochemical technology.1–3 Composite
coatings, including metal oxide coatings, are one of the most
promising issues for modifying the surface properties of various
materials.4,5 A well-known and obvious advantage of composite
coatings is that their properties and parameters can be changed
directionally by varying the composition of the coating and the
ratio of its constituent components.
Electrolysis opens up great opportunities in controlling the

structure and the properties of deposited oxide films, accordingly.
The development of composite electrochemical coatings based
on metal oxides with the inclusion of dopants of various natures,
including surfactants should be considered as the one of main
directions of electrocatalysis.6

Among composite coatings, metal oxide-polymer coatings in
which fluorinated compounds are used as a dopant component
are of particular interest.7 The inclusion of fluorinated compounds
in the metal-oxide matrix gives antistatic, anti-adhesive and antic-
orrosion properties while retaining the inherent properties of the
metal oxide, including high electrical conductivity, resistance to
mechanical wear and good adhesion to the substrate.
Electrodeposited lead dioxide (PbO2) has a number of valuable

benefits that facilitate its use as a platinum (Pt) substitute in a

various processes of electrochemical synthesis.8 These features
include chemical resistance in aggressive solutions, high electrical
conductivity of the metal type, the ability to create composite
materials and ease of preparation.
The addition of polyelectrolytes (long-chain polymers with

charged functional groups) into the electrolyte deposition leads
to significant changes in the electrodeposition regularities, the
physicochemical properties of oxides and the electrocatalytic
activity of the obtained electrode materials.9,10 As was shown in
a number of our previous works, the presence of fluorine
(F) ions11 and the Nafion® polyelectrolyte12, 13 in the deposition
electrolyte affects the properties of the obtained PbO2, in particu-
lar, changing its morphology, texture and electrocatalytic activity
in oxygen transfer reactions. From this point of view, investigation
of the influence of potassium salt of nonafluorobutanesulfonic
acid (C4F9SO3K) on the properties of synthesized PbO2 is of signif-
icant interest, because C4F9SO3K is an intermediate surfactant
between small fluoride ion and the large polyelectrolyte Nafion®.
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For polyelectrolytes, in particular for Nafion®,12 significant
changes were observed both in the electrodeposition regularities
and in the electrocatalytic activity of the resulting electrodemate-
rials. It is obvious that modification with surfactants, because
some of them are monomers of polyelectrolytes, also should lead
to a change in the kinetics of deposition, and, as a consequence,
to a change in their properties.
Herein we used C4F9SO3K as an additive in the PbO2 deposition

electrolyte. We chose a surfactant containing F and a fluorosulfo-
nic acid residue as substituents. This surfactant contains substitu-
ents similar to Nafion®, and, in fact, is its monomer. The oxidation
of compounds of this type at high anodic potentials is practically
excluded. Because the selected additive is an anionic surfactant,
then most likely it will be adsorbed on the positively charged sur-
face of the growing oxide. It should be noted that in the literature
there is practically no information on the effect of surfactants on
the electrodeposition regularities of metal oxides.14 Therefore, in
this work, we studied the regularities of electrodeposition of
PbO2 in the presence of nonafluorobutanesulfonic acid in the
potassium salt solution as a modifying additive, as well as the
electrocatalytic activity of the obtained oxide materials.
The obtained results concerning synthesis and physicochemical

properties can contribute substantially to a fundamental under-
standing of the relationship between the coating composition,
structure and catalytic activity, important to all fields of catalysis.

MATERIALS AND METHODS
All chemicals were reagent grade. Electrodeposition kinetics of
doped PbO2 were studied on a Pt rotating disk electrode (Pt-
RDE, 0.19 cm2) by steady-state voltammetry and chronoampero-
metry. For the RDE experiments the voltammetry system SVA-
1BM was used. The potential scan rate was varied within
1–100 mV s–1 depending on the purposes of the experiments.
Before each experiment, the electrode surface was treated with
a freshly prepared mixture (1:1) of concentrated sulfuric acid
(H2SO4) and hydrogen peroxide (H2O2).

15 This preliminary treat-
ment technique permits the stabilization of the electrode surface
and determines the reproducibility of cyclic voltammograms in
the background electrolyte (0.1 mol L–1 HNO3). Voltammetry
measurements were carried out in a standard temperature-
controlled three-electrode cell. Temperature was maintained at
298 ± 1 K. All potentials were recorded and reported versus sil-
ver/silver/potassium chloride [Ag/AgCl/KCl (sat.)].
Electrodeposition was studied in 0.1 mol L–1 nitric acid (HNO3)

+ 0.01 mol L–1 lead nitrate [Pb(NO3)2]. Surfactant was added into
the deposition electrolyte as an aqueous solutions with
0.003 mol L–1 concentration. Because at low concentrations of
surfactant, the composition of the electrolyte will significantly
change during deposition, a concentration was chosen at which,
according to the adsorption isotherm, one can obtain 100% sur-
face filling, when the electrolyte composition will not change if
the surfactant has been consumed.
The determination of current efficiency and partial current of

PbO2 deposition [IPb(II)] was done according to the method
described in detail previously.16

Becuase PbO2 electrodeposition proceeds simultaneously with
an oxygen evolution reaction, for determination of partial PbO2

electrodeposition current [IPb(II)] and current efficiency [CEPbO2 ]
of the PbO2 total charge and charge that passed on the reduction
of obtained deposit were measured16:

CEPbO2 =Qred=Q

IPbO2 =Qred=τ,

where Q and Qred are charges passed through the electrolytic cell
and passed on the reduction of PbO2 coating, respectively, and τ
is electrolysis time upon state potential.
For finding out the surfactant influence on PbO2 electrodeposi-

tion kinetics values of the apparent heterogeneous rate constants
(k) for anodic Pb(II) oxidation were calculated according to the
Koutecky–Levich equation:

1
I
=

1
nkFSc0

+
1

0:62nFSD2=3ν−1=6c0
� 1
ϖ1=2

,

where n is the number of electrons transferred in the half reaction,
S is the electrode area (сm2), ω is the angular velocity of electrode
rotation (rad s–1), ν is the solution kinematic viscosity (Pа s) and
other terms have their conventional electrochemical
significance.17

The surface morphology of the PbO2 anodes was studied by
scanning electron microscopy (SEM) with a Leica/Cambridge
Stereoscan 440 LEO microscope/ UK.
The method for the determination of high molecular weight ali-

phatic acids18 was adapted for the determination of the concen-
tration of surfactant in aqueous solutions. This method involves
the formation of an associate of a high-molecular anion and a
dye, followed by extraction into a nonaqueous medium. The con-
tent of organic substance was determined photocolorimetrically
after extraction of the ionic associate with chloroform. Ten millili-
tres of distilled water were placed in a separatory funnel and 2 mL
of 0.1% aqueous solution of methylene blue was injected. Then,
1 mL of the test solution was injected and shaken for 2 min with
15 mL chloroform. The organic phase was filtered through cotton
wool and the optical density measured at 650 nm using a CPC-2
colorimeter/ Sergiev Posad/ Russian Federation. To determine
surfactants in composite coatings of known mass, the latter were
cathodically dissolved at a current density of 2 mA cm−2 in 30 mL
of 0.1 mol L–1 HCl. Then the concentration of additives was deter-
mined in solution by the above method.
Adsorption measurements were carried out on 0.5 g PbO2 pow-

der (Merck) in 0.1 mol L–1 hydrochloric acid (HCl) solutions con-
taining various amounts of additive. The measurements were
carried out in the presence of an indifferent electrolyte
(0.1 mol L–1 KCl), which screened the electrostatic field of the
oxide surface. The time to establish the adsorption equilibrium
was 24 h.
Adsorption parameters were calculated using the Frumkin

equation19:

Bc=
⊔

1−⊔
exp −2⊍⊔ð Þ,

where B is the adsorption constant, ⊔ is the surface coverage, ⊍ is
an interaction parameter and c is the equilibrium concentration.
For aqueous solutions, when the concentration of solute is small

and is expressed in mol L−1,
B = 0, 018exp(−ΔG/RT),where ΔG is free adsorption energy.
The surface tension of surfactant solutions wasmeasured by the

method of maximum pressure in a gas bubble.20 Platinized tita-
nium was used as a sheet during investigation of the
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electrocatalytic activity of materials. It was treated accordingly
before Pt layer deposition.21

The O2 evolution reaction was investigated by steady-state
polarization on a computer-controlled EG & G Princeton Applied
Research potentiostat model 273A/ Ametek/UK in 1 mol L–1

H2SO4.
The electro-oxidation of organic compounds was carried out in

divided cell at jа = 50 mА сm−2. The volume of anolyte was
130 сm3. Solution containing phosphate buffer (0.25 mol L–1

Na2HPO4 + 0.1 mol L–1 KH2PO4) + 10−4 mol L–1 organic com-
pound (рН = 6.55) was used as anolyte; phosphate buffer was
the catholyte with a stainless steel cathode. Composite PbO2-
surfactant electrodes were used as anodes. The electrode surface
area was 2.5 сm2.
The changing concentration of the organic substance during

electrolysis was measured by sampling (5 cm3 volumes) at regular
intervals and measuring the optical density of the solution in the
UV-visible region (wavelength range 200–350 nm) using a Kon-
tron Uvikon 940 spectrometer/ Kontron Instruments/ Plaisir/
France.
Analyses of the reaction products were conducted by high

performance liquid chromatography (HPLC) using a Shimadzu
RF-10A xL instrument/ Shimadzu/ Japan equippedwith an Ultravi-
olet SPD-20AV detector and a 30-cm Discovery® C18 column.
All of the experiments were repeated twice at least in order to

achieve satisfactory reproducibility. All instruments had normal-
ized metrological characteristics and were calibrated. The data
for the linearized plots were processed using the least squares
method, which requires that the sum of the squared deviations
of the experimental points from the curve be the smallest. For
straight lines, equations were found from which constants were
determined. Reliable data were considered for which the correla-
tion factor was >0.99. Calibration plots were processed by a data
processing program for calibration plots. The results were pro-
cessed using mathematical statistics methods in order to deter-
mine the required number of measurements and assess the
reliability of the obtained experimental data. The reliability of
the results and the validity of the conclusions were confirmed
by the integrated use of a set of modern techniques, reproducibil-
ity of experimental material.

RESULTS AND DISCUSSIONS
Several characteristic regions could be distinguished in cyclic vol-
tammograms (CV, potential scan area 0.9–1.6 V; Fig. 1). An expo-
nential increase in the anode current was observed in the anode
region at potentials from 1.4 V due to the simultaneous
Pb(II) oxidation and oxygen evolution reactions. There was a max-
imum current on the cathode branch at potentials between 1.0
and 1.1 V, due to the PbO2 reduction reaction:22

PbO2+4H+→Pb2+ +2H2O+2e−:

When C4F9SO3K was added to the electrolyte, the peak of
cathodic reduction of PbO2 decreased slightly (see Fig. 1), which
indicates a slight inhibition in the rate of PbO2 formation. More-
over, with an increase in the concentration of surfactant in the
deposition electrolyte, the effect of inhibiting Pb2+ oxidation
was not apparent. The number of electrons that take part in the
kinetic stage are determined from linear potential sweep voltam-
metry measurements according to Delahay equation,16 as
described in the literature for analogous conditions.23,24 The

transfer coefficient remained almost unchanged (⊍ = 0.42 ± 0.1)
when the surfactant was present in the deposition electrolyte.
The calculated number of electrons in the elementary stage was
1.0 ± 0.1, confirming that PbO2 formation is a multistep charge
transfer which involves two consecutive one-electron stages, as
outlined in the following kinetic scheme:

H2O→OH _ads +H
+ +e− ð1Þ

Pb2+ +OH _ads→Pb OHð Þ2+ ð2Þ
Pb OHð Þ2+ +H2O→Pb OHð Þ22+ +H+ +e− ð3Þ

Pb OHð Þ22+→PbO2+2H+ ð4Þ

This mechanism has been modified from the first version, pro-
posed by Fleischmann and Liler,25 where insoluble oxygen-
containing Pb(IV) intermediates were proposed, involving the
presence of several soluble intermediates such as the oxygen-
containing Pb(IV) species proposed by Chang and Johnson,26

and the oxygen-containing Pb(III) intermediate suggested by Veli-
chenko et al.,27 who afterwards proved the existence of both
oxygen-Pb(III) and oxygen-Pb(IV) soluble intermediates.28

As a rule, at low anodic polarizations (Е < 1.55 V) reactions will
be under kinetic control, whereas at the high polarizations Pb2+

ion transport to the electrode surface will be the rate-determining
stage.
Steady-state polarization curves are shown in Fig. 2. These

curves take into account the partial Pb(II) electro-oxidation pro-
cess, in the absence and in the presence of surfactant.16,23,24 In
the lower potential range, plots of E versus log j are linear
(r = 0.99) indicating that the PbO2 electrodeposition process is
controlled kinetically. The limiting diffusion current of the partial
oxidation of Pb2+ ions is reached at deposition potentials above
1.8 V. One can observe some decrease in the rate of PbO2 forma-
tion in the presence of added surfactant from these curves.
Apparent heterogeneous rate constants were calculated

according to the Koutecky–Levich equation17,29 from intercepts
of 1/I versus 1/ω1/2 plots. Results show that the presence of
C4F9SO3K in the deposition solution caused the apparent hetero-
geneous rate constant to decrease slightly from
(4.06 ± 0.1) × 10−4 to (3.28 ± 0.1) × 10−4 ms−1 as the concentra-
tion of dopant increases from 0 to 0.003 mol L–1. These results

Figure 1 Cyclic voltammograms (scan range 0.9–1.6 V) on Pt in solutions
containing 0.01 mol L–1 Pb(NO3)2 + 0.1 mol L–1 HNO3 (1) + 0.003 mol L–1

C4F9SO3K (2). v = 50 mV s–1.
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are in agreement with the voltammetry data (see Fig. 1) discussed
above in this section.
Figure 3 shows the dependences of the current efficiency (CE) of

PbO2 formation obtained from stationary polarization curves. The
CE of PbO2 decreased when surfactants were added to the solu-
tion, whereas the inhibition effect was insignificant with an
increase in the concentration of surfactant. The observed effect
is probably due to a decrease in the number of active centres
on the electrode surface.
Adsorption measurements were performed on a PbO2 powder

at zero charge potential.30 As one can see from the experimental
data, the adsorption of surfactant is satisfactorily described by the
Frumkin isotherm (Fig. 4, correlation factor 0.996). The value of
interaction parameter calculated from the Frumkin equation is
1.00 ± 0.05 that suggests the slight interaction between adsorbed
molecules. The value of the energy of adsorption interaction
(−ΔG) for potassium perfluorobutanesulfonate is 33.20 ± 0.01 kJ
mol−1, which indicates the specific character of adsorption.
As a result of potentiometric measurements (Fig. 5), it was

established that the adsorption of C4F9SO3K on PbO2 was

accompanied by a shift of the pH0 (zero charge pH) of the oxide
to a region of higher value. This suggests that adsorption pro-
ceeds without the participation of functional groups of both a sur-
factant and the oxide surface. This hypothesis is well-supported
by the data on the adsorption material balance.11 The obtained
data indicate the weak chemical adsorption of surfactant on lead
dioxide,31 that is confirmed by a slight displacement of the pH0 of
the oxide.32

The critical micelle concentration (CMC) of C4F9SO3K was deter-
mined in order to establish whether micellization is present in the
solution. Its value in 0.1 mol L–1 Pb(NO3)2 + 0.1 mol L–1 HNO3

solution was rather large and amounted to 0.020 ± 0.001 mol L–
1. This also confirmed that all the working electrolytes were true
solutions.
It was found that during electrodeposition of PbO2 in the pres-

ence of C4F9SO3K in the electrolyte, the additive was included in
the growing deposit with the formation of a composite oxide-
surfactant coating. Thus, it was found that an increase in the con-
centration of surfactant does not affect its content in the coating.
The latter was c. 2.00 ± 0.05 wt% when the concentration of

Figure 2 Steady-state polarization curves for partial PbO2 electrodeposi-
tion current on Pt disk electrode in solutions containing 0.01 mol L–1

Pb(NO3)2 + 0.1 mol L–1 HNO3 (1) + 0.003 mol L–1 C4F9SO3K (2).

Figure 3 Current efficiency of lead dioxide versus potential of deposition
in solutions containing 0.01 mol L–1 Pb(NO3)2 + 0.1 mol L–1 HNO3 (1) +
0.003 mol L–1 C4F9SO3K (2).

Figure 4 The Frumkin isotherm of C4F9SO3K adsorption on PbO2. ⊔ and C,
surface coverage and equilibrium concentration, respectively.

Figure 5 PbO2 (0.5 g) potentiometric titration results; concentration of
potassium perfluorobutanesulfonate 0 (1) and 0.003 mol L–1 (2).
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C4F9SO3K in the deposition electrolyte changed from 0.0015 until
0.005 mol L–1. A surfactant concentration of 0.003 mol L–1 was
chosen as working solution. At this concentration, according to
the adsorption isotherm (see Fig. 4), we are in the region of
hundred-degree surface filling, which means that one molecule
of a surfactant corresponds to each adsorption center on the sur-
face; and the electrolyte will remain the true solution, when the
surfactant is added.
The data obtained can be adequately explained on the basis of

a number of hypotheses. On the one hand, using a classical elec-
trodeposition scheme, when surfactant adsorption occurs on the
surface of growing PbO2, the phenomenon of changing the
additive content in the coating can be caused by two factors:
(i) heterogeneous (concentration on a growing surface due to
adsorption) and (ii) migratory (flow from the solution bulk to
the surface under the influence of an electric field). On the other,
we cannot exclude that not only crystallization but also colloidal
particle formation occurs in the supersaturated layer of the solu-
tion, and that some particles adhere to the surface of the grow-
ing crystals, as observed in the case of synthesis of PbO2-TiO2

composites.29 It should be noted that it is possible that all of
the described effects occur simultaneously with different contri-
butions. None of these hypotheses contradict the obtained
experimental data.
An increase in the anode current density allowed us to obtain

composites containing ≤17.00 ± 0.05 wt% of organic substance
(Table 1). The observed effect is probably due to an increase in the
positive charge of the electrode, which contributes to an increase
in the adsorption of anionic surfactants on the surface of the grow-
ing oxide. An increase of the deposition temperature to 60 °C facili-
tated coatings with surfactant contents ≤10.00 ± 0.05 wt%.
The inclusion of surfactants in a growing coating leads to a

change in the texture and structure of the resulting film. It is
widely recognized8 that the surface of nonmodified PbO2-sample
is homogeneous and large-crystalline. With an increase of surfac-
tants in the coating, a decrease in the size and shape of crystalline
blocks of PbO2 was observed. As can be seen from SEM images,
the presence of surfactants in the coating prevented the forma-
tion of large crystalline blocks, and when the organic content
was 14.00 ± 0.05 wt%, significant internal stresses were observed
in the coating [Fig. 6(a) and (b)]. The crystals exhibit sharp angles
on both images. SEM/EDAX experiments [Fig. 6(c)] were per-
formed to evaluate the amount and distribution of elements in
electrodeposited composite. Low peaks corresponding to O and
F indicate a satisfactory distribution of modifying elements in
the entire sample bulk, not only on the coating surface. In addi-
tion, it was not possible to detect the S peak because it is too near
of the very intense Pb peak.

Because a change in the physicochemical properties of oxides
should lead to a change in the degree of filling of oxygen-
containing particles of various types,27 it possible to assume that
the electrocatalytic activity of the obtained electrode materials
also should change.
The electrocatalytic activity of PbO2 deposited from a solution

containing a surfactant was studied both in the respect to the
O2 evolution reaction and the oxidation of 4-chlorophenol. As fol-
lows from the steady-state polarization curves shown in Fig. 7, the
O2 evolution reaction decelerated on a PbO2-C4F9SO3K
composite.
As has been found in many papers13,16,21 the rate of the O2 evo-

lution process can change due to the nature and amount of addi-
tive. Such a change depends mainly on changes in chemical
properties of the oxide surface that, in turn, change the bond
strength of oxygen-containing particles chemisorbed on the elec-
trode surface.
According to the mechanism proposed by Pavlov et al.,33 O2

evolution proceeds at active sites localized in the hydrated PbO2

layer. The surface of lead dioxide has crystalline (PbO2) and
hydrated [PbO(OH)2] zones, which are in equilibrium and, in the
latter case, are capable of exchanging cations and anions. The
process of O2 evolution can be described by the following
scheme:

PbO· OHð Þ2 +H2O→PbO· OHð Þ2… OН•ð Þ+H+ +e− ð5Þ
PbO· OHð Þ2… OН•ð Þ→PbO· OHð Þ2 +O+H+ +e− ð6Þ

2O→O2 ð7Þ

Trassatti34 has shown that if the oxygen evolution reaction is
limited by the stage of transfer of the second electron (electro-
chemical desorption), an increase in the bond strength of chemi-
sorbed oxygen will lead to an increase in the overvoltage of O2

evolution. Under conditions when the transfer of the first elec-
tron (electrochemical adsorption) will be the limiting stage, the
overvoltage of the O2 evolution reaction will decrease. As is
known, the process of O2 evolution on PbO2 is controlled by
the stage of transfer of the second electron;35 therefore, the
growth in overvoltage in our case indicates an increase in the
bond strength of oxygen-containing radicals with the electrode
surface.
According to the obtained results, oxygen overpotential on

modified electrodes is significantly higher than on the nonmodi-
fied PbO2-electrode and depends on the surfactant content in
deposit, as was observed in the case of bismuth.16 The obtained
values of the Tafel slopes are significantly higher than theoretical.
The data obtained show that oxygen overpotential for undoped
PbO2 is 1.676 V; for 3 × 10−5 mol L–1 C4F9SO3K in the deposition
electrolyte it is 1.727 V; for 3 × 10−4 mol L–1 it is 1.768 V; and for
3 × 10−3 mol L–1 it is 1.679 V, which indicates 100% filling of the
surface of PbO2 with a surfactant at such a concentration.
According to the literature,36,37 at high anodic potentials, the

electro-oxidation of most organic substances also proceeds with
the participation of oxygen-containing particles chemisorbed on
the electrode. 4-Chlorophenol was chosen as model compound
in order to study the effect of C4F9SO3K on the catalytic activity
of PbO2-based composite electrodes with respect to organic
substances. This is due to the fact that the process of electro-
oxidation of phenolic compounds on unmodified PbO2-
electrodes is well studied and described in the literature.38–41

Benzoquinone and maleic acid are recognized as the main

Table 1 The content of surfactant in PbO2-C4F9SO3K composites
depending on the anode current densitya

ja (mA cm−2) ω ± 0.05 (wt%)

4 1.92
6 5.72
8 14.14
20 16.63

aComposites deposited from 0.1 mol L–1 HNO3+ 0.1 mol L–1

Pb(NO3)2+ 0.003 mol L–1 С4F9О3SK.
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intermediate products in the anodic oxidation of 4-chlorophenol.
In this regard, a convenient way to evaluate the conversion rate of
4-chlorophenol is the disappearance time of aromatic intermedi-
ates, which can be determined from the UV spectra of solutions
at different electrolysis times.
The UV spectrum of the 4-chlorophenol initial solution is charac-

terized by two peaks at wavelengths of 230 and 280 nm.38 At the
first time of electrolysis, there is a decrease in the peak at 230 nm,

as well as a slight increase in the peak at 280 nm and the appear-
ance of the plateau at 250–270 nm, which is due to a decrease in
the concentration of 4-chlorophenol and the accumulation of
benzoquinone in the solution. A further increase in electrolysis
time leads to the disappearance of peaks at 230 and 280 nm, as
well as a decrease of plateau at 250–270 nm due to a decrease
in the concentrations of both 4-chlorophenol and benzoquinone
(Fig. 8). HPLC data indicated that the aromatic compounds were
completely destroyed with the formation of only aliphatic elec-
trolysis products (in particular, maleic acid) after 4 h of electrolysis

Figure 6 SEM micrographs of (a) PbO2-1.92 wt% and (b) PbO2-14.1 wt% C4F9SO3K; (c) EDX spectrum of sample in (a).

Figure 7 Steady-state polarization curves of oxygen evolution in 1 mol L–
1 H2SO4 (Scan rate 1mV s−1, t= 25 °С) on PbO2-electrodes, deposited from
next solutions: 0.1 mol L–1 Pb(NO3)2 + 0.1 mol L–1 HNO3 + X mol L–1

C4F9SO3K, where X is 0 (1), 3 × 10−5 (2), 3 × 10−4 (3) and 3 × 10−3 (4). Coat-
ing electrodeposited on Ti/Pt sheet.

Figure 8 Electronic absorption spectra of solutions with 0.1 mmol L–1 ini-
tial concentration of 4-chlorophenol during electrolysis on PbO2-1.92 wt%
C4F9SO3K anode.
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on an unmodified PbO2-anode. As follows from Table 2, the con-
version rate of 4-chlorophenol increasef with increasing of surfac-
tant content in the composite. The observed effect is due both to
an increase in the direct electrochemical oxidation rate of
4-chlorophenol and inhibition of the oxygen evolution reaction
on PbO2–fluoropolymer composite. The simultaneous action of
these two factors will increase the conversion rate of
4-chlorophenol.

CONCLUSION
The addition of C4F9SO3K into the PbO2 deposition electrolyte has
practically no effect on the kinetics of Pb2+ electro-oxidation; the
mechanism of the process as a whole also does not change. In the
region of low polarizations, the limiting stage is the second elec-
tron transfer, apparent from the slight decreased in heteroge-
neous rate constant with increasing surfactant concentration in
the deposition electrolyte. It was shown that the observed effect
is due to the adsorption of fluoropolymer and, as a consequence,
the blocking of active centres on the surface of the growing oxide.
It was found that during electrodeposition of PbO2 in the pres-

ence of C4F9SO3K in the electrolyte, the additive is included in
the growing oxide with the formation of a composite oxide-
surfactant coating. Depending on the composition of the deposi-
tion electrolyte and the electrolysis conditions, the surfactant con-
tent in the composite coating ranges from 2.00 ± 0.05 to
17.00 ± 0.05 wt%. The inclusion of surfactants in the growing
coating with almost unchanged kinetic regularities of electrode-
position leads to a change in the texture and structure of the
resulting films.
It was found that, the obtained PbO2–fluoropolymer composite

materials differ from unmodified PbO2 in terms of their electroca-
talytic activity. When using the composites involved as anodes,
the inhibition of O2 evolution and an almost three-fold increase
in the rate of electrochemical conversion of 4-chlorophenol to ali-
phatic compounds were observed.
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