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1. Introduction
Creating new polymers and composites with micro-

biocidal properties is one of the topical areas of modern 
pharmaceutical chemistry. Such materials are widely used 
for the production of implants [1], catheters [2], unique 
clothing [3], medical equipment and furniture [4], dress-
ings [5], filters [6], etc. In connection with the recent events 
related to the COVID-19 pandemic, the creation of personal 
protective equipment (respirators, medical masks, badges, 
etc.) with antimicrobial and antiviral effects, which are 
mostly polymer, has also become particularly relevant [7, 8]. 
The use of such products is an effective method of preven-
tion [9, 10] and, in some cases, the treatment of infectious 
diseases of various aetiology [9–11]. The advantages of us-
ing microbiocidal polymers are the variety of their physical 
forms (from fibres with a highly developed surface to 
thin-layer coatings) [12, 13], multifunctionality [14], stabili-
ty, the possibility of regeneration, etc.

Among the antimicrobial polymers, N-hala-
mine-containing (usually N-Chloramine-)materials are 

of special interest [15, 16]. Compounds containing the 
“chlorine-active” fragment “N-Cl” are exceptionally 
widely used due to their potent and rapid bactericidal, 
fungicidal and virucidal activity [17, 18], relative stability, 
the impossibility of developing resistance to them, as 
well as ease of their synthesis, and availability [19]. 
There are several traditional ways to combine such com-
pounds with a polymer carrier. In the simplest case, a 
suitable polymer is impregnated with the necessary 
N-Chloramine. Further, upon contact with a contaminat-
ed environment, the latter molecules are desorbed, caus-
ing an antimicrobial effect [20, 21]. Products from such 
materials are easy to manufacture and achieve an imme-
diate effect, but, in most cases, they are disposable and 
sensitive to storage conditions (for example, if moisture 
gets in, the active component can simply be washed off 
from the carrier). Polymers are described in which 
N-Chloramines or their “non-charged” with chlorine 
precursors act as monomers [22, 23]. Such materials can 
contain high concentrations of active chlorine and pro-
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vide a powerful long-term microbiocidal effect. However, 
the technologies for their production are usually quite 
complex. The physical and mechanical properties of such 
polymers depend on the nature of the monomer used and 
are limited by it. The technologies for modifying an al-
ready finished polymer carrier with suitable properties 
by embedding chlorine-active functional groups into it 
are more relevant. The most common is the immobiliza-
tion of fragments of cyclic amides or imides, for example, 
substituted hydantoins and imidazolidinones, which can 
be easily converted into N-Chloramine by interaction 
with chlorinating agents [24]. Such N-Chloramines are 
more stable due to the absence of an α-H-atom and, ac-
cordingly, the impossibility of decomposition by dehy-
drohalogenation mechanism [15]. Acyclic precursor 
groups of N-Chloramines, for example, acetamide, are 
also used often [15]. Recently, antimicrobial polymeric 
N-Chloramines based on chitosan, which initially con-
tains a free amino group, have been actively studied [25]. 
In the above cases, the final step is the “charging” of 
immobilized functional groups with chlorine, most often 
by treatment with sodium hypochlorite. Many synthetic 
and natural polymers can be used as carriers: polyure-
thanes [26], cotton [27], silica gels [28], etc. The reac-
tions of immobilization of precursors of the chlorine-ac-
tive group are also diverse [15]; however, in most cases, 
the presence of specific reactive fragments in the struc-
ture of the polymer carrier is necessary, for example, a 
6-hydroxy group in cellulose or an amide group in nylon. 
The introduction of antimicrobial N-Chloramine moi-
eties in inert polymers such as polypropylene or polyeth-
ylene terephthalate are much more complex [29, 30]. The 
described approaches make it possible to obtain poly-
mers of various physical forms and chemical structures 
with a powerful and long-lasting antimicrobial effect and, 
in many cases, capable of multiple regenerations. Howev-
er, the grafting of complex organic fragments compli-
cates the synthesis of such materials and increases the 
risk of allergic reactions in their medical use, such as 
dressings. 

Another type of common and highly effective 
chlorine-active preparation with pronounced microbio-
cidal activity is N-Chlorosulfonamides. They have long 
and often been used in water treatment and for disinfec-
tion measures, for example, chloramines B and T [31]. 
Accordingly, the N-Chlorosulfonamide group is also a 
promising moiety for immobilization on a polymer carri-
er, especially since it is the most stable and does not 
contain organic fragments. The difficulty lies in the fact 
that the precursor sulfochloride group, from which the 
reaction with ammonia can subsequently obtain the tar-
get sulfamide group, can be embedded into the polymer 
only under very harsh conditions, for example, by treat-
ing the carrier with chlorosulfonic acid, sulfuryl chloride, 
or other very aggressive reagents. Most polymer-carriers 
do not withstand such conditions. Polymers of an aromat-
ic nature, for example, polystyrene, as well as the prod-
ucts of its copolymerization with divinylbenzene, are 
suitable carriers for this purpose. Methods for the prepa-
ration and properties of some N-Chlorosulfonamides 

immobilized on such carriers have been described. Thus, 
Emerson et al. developed synthetic procedures and stud-
ied the chemical and antimicrobial properties of modi-
fied macroporous granular cation exchangers with im-
mobilized N-Chlorosulfonamide groups [32, 33]. Similar 
granular materials, but using cation exchangers of other 
brands, have been actively studied by Bogoczek and col-
leagues [34–36]. These authors proved the antimicrobial 
activity of the synthesized polymers, described their ox-
idizing and other chemical properties, and proposed 
methods for their use in water treatment, for example, to 
remove iron ions, nitrites, cyanides, etc. However, all 
these polymers have a granular form with a relatively 
small surface area. Therefore, their use in pharmaceuti-
cal and medical purposes is limited, although they are 
promising for industrial goals due to their high-strength 
properties. Fibrous polymers of the styrene-divinylben-
zene structure are described much less. Maddah and 
colleagues have developed a technology for producing 
chlorine-active polystyrene nanofibers, described its mi-
crobiocidal properties and demonstrated the possibility 
of its use, among other things, for the creation of protec-
tive clothing [37, 38]. At the same time, the electrospin-
ning technology for obtaining such materials is quite 
expensive and inaccessible. Fibrous styrene-divinylben-
zene polymers under the brand name FIBAN have been 
described and industrially produced using special radia-
tion polymerization technology [39]. These materials 
withstand the harsh conditions of sulfochlorination with-
out significant change in physical and mechanical prop-
erties, can exist in the form of a staple fibre with a devel-
oped surface or the form of the easily standardized 
non-woven fabric and are relatively affordable. We have 
developed methods for immobilizing N-Chlorosulfon-
amide groups of various structures on such carriers [40], 
studied the processes of active chlorine emission from 
them (and from their granular analogues) into aqueous 
media [40, 41], proved potent antimicrobial [42] and viru-
cidal [43] properties, and conducted a number of in vivo
studies of their effectiveness for treating open wounds [44]. 
Due to their fibrous form, such chlorine-active polymers 
are promising for use in medicine and pharmaceutics as 
components of antiseptic dressings, antibacterial protec-
tive masks and air filters, as well as for obtaining 
high-purity antiseptic and disinfection solutions in situ. 
Current work is a logical continuation of the direction we 
are developing.

This study aimed to establish the antimicrobial 
effectiveness of fibrous polymeric materials with immo-
bilized N-Chlorosulfonamide functional groups in rela-
tion to hospital antibiotic-resistant strains of microorgan-
isms and to determine their microbial penetration 
resistance for further evaluation of the prospects for their 
use as components of antiseptic medical and pharmaceu-
tical products.

2. Research planning
The experiment was planned based on several 

previous studies. Given that the primary goal of this area 
of our work is the creation of microbiocidal medical 
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products, the effectiveness of which strongly depends on 
their surface area (dressings, protective masks, antimi-
crobial filters, etc.), only fibrous chlorine-active poly-
mers [40, 45] have been investigated, and repeatedly de-
scribed by us [41] similar polymers in granular form have 
not been studied. It was essential to establish a correla-
tion between the intensity of the antimicrobial action of 
the polymer and the concentration of immobilized chlo-
rine in it; therefore, samples with a wide range of chlo-
rine content have been synthesized. It was also necessary 
to establish the dependence of the antimicrobial activity 
of the polymer on the structure of the 

The n-Chlorosulfonamide group strongly affects 
the active chlorine release kinetics [42, 46]. For this, sam-
ples with three types of functional groups have been 
synthesized: N-Chlorosulfonamide in the Na- and 
H-forms, and N, N-dichlorosulfonamide. 

We proved the antimicrobial activity of some syn-
thesized polymers against standard microorganisms 
strains [42, 44, 47]. The modified method of agar plates 
has been developed [42, 47], which makes it possible to 
reliably determine it, taking into account the specifics of 
the materials under study, which was also used in this 
work. It seemed most important to study the effectiveness 
of such polymers against resistant hospital strains, for 
which clinical material was taken from 33 patients of the 
Central Military Clinical Hospital of the Ministry of De-
fense of Ukraine, wounded during the conflict in the East 
of Ukraine. Separation and identification of individual 
hospital microorganisms have been carried out, their anti-
biotic sensitivity has been determined, and their resistance 
against the studied chlorine-active polymers has been 
evaluated, which was one of the goals of this work. The 
most common pathogens of nosocomial infections have 
been selected for the study: Staphylococcus aureus, Pseu-
domonas aeruginosa, Candida albicans, and Enterococ-
cus hirae. Staphylococcus aureus causes many complica-
tions – from inflammation of the skin and soft tissues to 
lethal pneumonia – and is one of the most rapidly spread-
ing “superbugs” [48, 49]. Pseudomonas aeruginosa is as-
sociated mainly with the development of chronically in-
fected wounds, significantly complicates their therapy due 
to the ability to actively form barrier biofilms, and is also 
characterized by increased antibiotic resistance [49, 50]. 
Enterococcus hirae has previously been observed relative-
ly rarely. However, to date, it causes up to 3 % of entero-
coccal infections, is also responsible for septic shock, and 
therefore even proposed as a new test germ within the 
framework of the procedures for the European standard-
ization of chemical and antiseptic agents for evaluation 
and validation of disinfectant products [51]. Candida albi-
cans is the common cause of opportunistic mycoses world-
wide and one of the significant contributors to wound in-
fections [52]. Thus, the neutralization of these 
microorganisms is the essential element in the treatment of 
open wounds, so the effect of the synthesized polymers as 
potential components of antiseptic dressings and medical 
masks on them should have been studied in the first place. 

A critical property of polymers used in the manu-
facture of personal protective equipment is their ability 

to resist the penetration of microorganisms through them. 
In the simplest case, it depends only on the physicome-
chanical properties of the polymer (specific surface area, 
electrostatic properties, pore diameter, etc.). However, for 
the synthesized polymers with immobilized.

N-Chlorosulfonamide groups, it is also necessary 
to consider the completeness and kinetics of the release 
of active chlorine into the contaminated medium passed 
through the sample. In this work, this aspect has been 
studied for the first time.

3. Materials and methods
Polymer samples with immobilized N-Chlorosul-

fonamide groups have been synthesized from a fibrous 
cation exchanger FIBAN K-1 in the form of a staple fibre 
(“cotton wool”) and a non-woven fabric (“fabric”) ac-
cording to the procedure described in [41, 42, 44]. In ad-
dition, the concentration of immobilized chlorine has 
been determined according to a special method of iodo-
metric titration developed and described by us in [41, 42].

To study the effectiveness of the antimicrobial ac-
tion of polymeric chlorine-active materials, standard 
strains of microorganisms were used: for bactericidal 
activity – Staphylococcus aureus ATCC 6583 (S. аureus), 
Pseudomonas aeruginosa ATCC 9027 (P. aeruginosa), 
for yeasticidal activity – Candida albicans ATCC 6583 
(C. Albicans). Hospital strains have also been studied: 
Staphylococcus aureus (S. aureus H), Pseudomonas 
aeruginosa (P. aeruginosa H), and Enterococcus hirae

(E.hirae H), isolated from the patients. Hospital 
microorganisms were identified on the basis of their tinc-
torial microscopic signs and biochemical properties, and 
the full species identification was carried out according 
to biochemical parameters using a test system ID 32С 
(BioMerieux, France). Primary inoculation was carried 
out on several nutrient media depending on the type of 
clinical material: 5 % blood, chocolate, mannitol-salt 
agar, Endo’s medium, thioglycol medium, cetrimide agar, 
tryptone soya agar (TSA), tryptone soya broth (TSB), 
Sabouraud agar.

For the cultivation of test strains and all experi-
ments, the same nutrient media were used, the growth 
properties and sterility of which had been checked before 
the start of the research: TSA (“HiMedia”, India) – to 
determine the number of bacteria; Sabouraud agar (“Hi-
Media”, India) – to determine the number of fungi.

Preparation and preservation of test strains of mi-
croorganisms for research have been carried out accord-
ing to EN 12353:2006 [53].

Determination of the sensitivity of microorgan-
isms to antibiotics has been carried out by the Kirby-Bau-
er method [54]. The corresponding nutrient medium in 
the amount of 20 mL was poured into sterile Petri dishes. 
Before inoculation, the surface of the medium was dried 
at room temperature, keeping it in a slightly open dish for 
30–40 min. For inoculation, an 18–20-hour agar culture 
of strain was used. When using an agar culture, it was 
first washed off with a small (4–5 mL) amount of physi-
ological sodium chloride solution. Next, optical density 
on a KFK-3-01 photo colourimeter at a wavelength of 
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620 nm in a cuvette 10 mm thick determined the required 
number of microorganisms. The resulting inoculum was 
diluted 10 times with isotonic sodium chloride solution, 
and 1–2 mL of it was applied with a pipette to the surface 
of the medium, evenly distributed over the entire surface 
of the medium by rotating the dish. The excess of inocu-
lum was removed. The dish was dried for 10–15 min, and 
sterile cotton pads impregnated with the corresponding 
antibiotic were applied with sterile tweezers. Then the 
dish was cultivated at 37±1 °C for 18–20 hours. After that, 
the diameter of the growth inhibition zone was measured 
with an accuracy of 1 mm, including the diameter of the 
disks. The results were evaluated using the standard ta-
bles, which indicate the limits of the values of the diam-
eters of the growth inhibition zones of microorganisms 
for resistant, moderately resistant and sensitive 
strains [55]. The obtained values of the inhibition zones 
were compared with those indicated in the table, and the 
studied strains were assigned to one of these three sensi-
tivity categories. 

The antimicrobial effect of chlorine-active poly-
mers in the form of “cotton wool” was studied by the agar 
diffusion method (well method), based on the ability of the 
microbicide (in this case, active chlorine released from the 
polymer upon contact with the amino groups of microor-
ganisms or the agar itself) to diffuse into the nutrient me-
dium over all directions. The melted and cooled TSA was 
contaminated with the test microorganism suspension. 
The microbial load was 1×107 CFU/mL. The contaminated 
medium (20 mL) was poured into sterile Petri dishes and 
left to solidify. Then, wells 8 mm in diameter were formed 
in the thickness of the nutrient medium via a sterile punch. 
The test samples of “cotton wool” in 0.1 cm3 (about 
0.035 g) were placed in separate wells. The cultures were 
incubated in a thermostat for 24–48 hours at 37±1 °C. Af-
ter incubation, the diameters of growth inhibition zones 
around the wells were measured.

The antimicrobial activity of the “fabric” polymer 
samples was determined by the modified method of agar 
plates [41]. Suspension of the test microorganism was 
added to melted and cooled to 45 °C TSA at the concen-
tration of 1×107 CFU/mL, and 20 mL of this mixture was 
poured into sterile Petri dishes. Round “fabric” test sam-
ples of 1 cm in diameter (which corresponded by mass to 
the studied samples of “cotton wool”) were placed on the 
surface of the semi-hardened agar, slightly immersing 
them to increase the contact surface of the material with 
the nutrient medium. As shown earlier, if “fabric” sam-
ples are placed on the already hardened surface of the 
agar, effective diffusion of active chlorine into its volume 
is not achieved, which leads to a false negative result. 
Further actions were similar to those in the study of “cot-
ton wool” samples. The antimicrobial activity of the 
material was assessed by determining the diameter of 
inhibition zones, measured from the edge of the sample 
to the growth limit of the microorganism.

The resistance of “fabric” materials to the penetra-
tion of microorganisms was determined via a membrane 
filtration unit with a pressure of 35 kPa, which is used for 
drug research following the State Pharmacopoeia of 

Ukraine. It is the alternative to the method ЕN 14126:2003 
«Protective clothing. Performance requirements and tests 
methods for protective clothing against infective agents». 
First, test strain S. aureus was cultured on TSA for 18–24 
hours at 36±1 °C. Then 2–3 colonies were separated with 
a microbiological loop, resuspended in 5.0 ml TSB, and 
cultured for 18–24 hours at 36±1 °C. The obtained broth 
was diluted with phosphate buffer in a ratio of 1:10. The 
resulting suspension of microorganisms contained 
1×104 CFU/mL. This suspension in a volume of 5.0 ml 
was filtered on the specified unit through chlorine-active 

“fabric” samples of the appropriate size, which were 
placed on the stage of the filtering unit above the “Milli-
pore” microorganism filter with a diameter of 47 mm and 
a pore size of 0.45 μm. After filtering the suspension of 
microorganisms, the filter was placed on TSA and incu-
bated at 36±1 °C for 24 hours. Then the presence or ab-
sence of growth of the microorganism was recorded. The 
presence of growth indicated the penetration of microor-
ganisms through the polymer sample, and the absence of 
growth indicated its microbial impermeability.

All microbiological experiments were performed 
in triplicate. Samples of the initial polymer carrier con-
taining the sulfonamide group -SO

2
-NH

2
 not “charged” 

with chlorine served as the control.

4. Results
To study the antimicrobial activity, 6 samples of 

polymeric materials with immobilized N-Chlorosulfon-
amide groups have been synthesized, and 2 control sam-
ples with a sulfonamide group “uncharged” with chlorine 
have also been prepared. The most important character-
istics of these materials are given in Table 1; their appear-
ance is shown in Fig. 1. The chemical structure and 
physical and mechanical properties of all samples corre-
spond to those described earlier [41].

Table 1
The main characteristics of the studied chlorine-active 

polymers
Sample 

No.
Physical 

form
The structure of the 

functional group
Immobilized chlo-
rine concentration

1
«cotton 
wool»

-SO
2
-NClNa 6.8 %

2 «fabric» -SO
2
-NClNa 6.8 %

3 «fabric» -SO
2
-NHCl 3.7 %

4
«cotton 
wool»

-SO
2
-NHCl 3.7 %

5
«cotton 
wool»

-SO
2
-NCl

2
12.5 %

6 «fabric» -SO2-NCl2 9 %

7
«cotton 
wool»

-SO
2
-NH

2
–

8 «fabric» -SO
2
-NH

2
–

The results of determining the sensitivity of hospi-
tal strains of microorganisms isolated from patients to 
different antibiotics are shown in Table 2.

The results of the study of the antimicrobial activ-
ity of “cotton wool” samples (average of three reps) are 
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shown in Table 3. In addition, zones of growth inhibition 
of the studied strains of S. aureus under the action of 
these polymers are given in Fig. 2. 

Table 2
Sensitivity of hospital strains of microorganisms to 

antibiotics

Antibiotics

The number of strains sensitive to drugs 
(number / %)

E.hirae H 
(13 pieces)

S.aureus H (7 
pieces)

P. aeruginosa 
H (5 pieces)

Amoxicillin
2/11

15.4/84.6*
5/2

71.4/28.6
0/5

0/100
Amoxicillin/
clavulanate

2/11
15.4/84.6

3/5
42.9/57.1

0/5
0/100

Ciprofl oxacin
5/8

38.46/61.54
3/4

42.9/57.1
0/5

0/100

Norfl oxacin
5/8

38.46/61.54
¾

42.9/57.1
0/5

0/100

Ofl oxacin
5/8

38.46/61.54
3/4

42.9/57.1
0/5

0/100

Lomefl oxacin
5/8

38.46/61.54
3/4

42.9/57.1
0/5

0/100

Moxifl oxacin
6/7

46.15/53.85
2/5

28.6/71.4
0/5

0/100

Ceftriaxone
6/7

46.15/53.85
5/2

71.4/28.6
0/5

0/100

Cephalexin
0/13

0/100
2/5

28.6/71.4
0/5

0/100
Nitrofuran-

toin
4/9

30.76/69.24
1/4

20.0/80.0
0/5

0/100

Furazolidone
0/13

0/100
1/4

20.0/80.0
0/5

0/100
Cefuroxime 

sodium
5/8

38.46/61.54
2/5

28.6/71.4
0/5

0/100

Cefpodoxime
5/8

38.46/61.54
2/5

28.6/71.4
0/5

0/100

Cefi xime
5/8

38.46/61.54
2/5

28.6/71.4
0/5

0/100

Note: % sensitive / % insensitive

The results of the study of the antimicrobial activ-
ity of “fabric” samples of N-Chlorosulfonamides immo-
bilized on the polymer (average of three reps) are shown 
in Table 4. Zones of growth inhibition of the studied 
strains of S. aureus under the action of individual sam-
ples of these polymers are given in Fig. 3.

Table 3
Growth inhibition zones around the “cotton wool” samples

Sam-
ple No.

Microorganisms’ growth inhibition zones(mm)
S. au-
reus

P. aeru-
ginosa

C. albi-
cans

S. au-
reus (H)

P. aerugi-
nosa (H)

E. hi-
rae (H)

1 10.0 7.0 10.0 6.0 8.0 14.0
4 8.0 5.0 10.0 6.0 5.0 10.0
5 12.0 10.0 20.0 10.0 12.0 10.0
7 0 0 0 0 0 0

Table4
Growth inhibition zones around the “fabric” samples

Sample 
No.

Microorganisms’ growth inhibition zones (mm)

S. au-
reus

P. aerugi-
nosa

C. albi-
cans

S. aureus 
(H)

P. aerugi-
nosa (H)

E. hirae 
(H)

2 12.0 8.0 9.0 10.0 8.0 12.0

3 6.0 3.0 10.0 5.0 3.0 8.0

6 11.0 10.0 12.0 10.0 9.0 10.0

8 0 0 0 0 0 0

Resistance to microbial penetration has been stud-
ied only for “fabric” samples of chlorine-active polymers. 
After filtering the microbial suspension through samples 
No. 2, No. 3 and No. 6, no growth of microorganisms on 
the filter was observed, which indicates the impermeabil-
ity of these polymers for S. aureus. Control sample No. 8 
under the same conditions turned out to be permeable to 
this microorganism.

5. Discussion
Analysis of antibiograms of microorganisms iso-

lated from clinical material showed that in more than 
60 % of cases, they were insensitive to antibiotics of the 

Fig. 1. General appearance of the studied samples: 
a – “cotton wool”; b – “fabric”

a b

Fig. 2. Growth inhibition zones under the action of “cotton 
wool” samples: a – S. aureus H 6583; b – S. aureus ATCC

a b

Fig. 3. Growth inhibition zones under the action of “fabric” 
samples: a – S. aureus ATCC 6583; b – S. aureus H

a b
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cephalosporin and penicillin series and nitrofurans and 
can be classified as multidrug-resistant opportunistic 
microorganisms. The presence of such microbes in the 
organism significantly complicates the treatment of the 
corresponding diseases and can lead to serious complica-
tions in their course.

Microbiological studies have shown that signif-
icant zones of growth inhibition formed around all the 
samples of chlorine-active polymers, proving their 
high antimicrobial activity against both standard 
strains of microorganisms and resistant hospital ones. 
There were no growth inhibition zones around control 
samples No. 7 and No. 8, despite the presence of im-
mobilized sulfamide- and a certain amount of sulfo-
groups, which indicates that the microbicidal effect of 
such materials is due namely to the presence of immo-
bilized chlorine, and not, for example, because of 
change of the nutrient medium, change of the charge of 
the cell membrane of a microorganism upon contact 
with the polymer, or the adsorption of microbe on the 
material. It has been proven that the suppression of the 
growth of microorganisms under the action of synthe-
sized polymers in both physical forms is achieved di-
rectly under the sample and at a considerable distance 
from its edge. This means that such polymers not only 
have their antimicrobial activity (i.e., the ability to 
inactivate microorganisms upon direct contact) but 
also ensure the gradual release of microbicidal active 
chlorine into the environment, and, as we have shown 
earlier, this process starts precisely in the presence in 
this environment of amino compounds, including 
those of microbiological origin. 

Zones of inhibition of the growth of microorgan-
isms around polymer samples are not the same. In gener-
al, “cotton wool” samples demonstrated slightly more 
pronounced antimicrobial activity than “fabric” ones, 
primarily due to their larger surface area. Samples No. 3 
and No. 4 with immobilized 

N-Chlorosulfonamide groups in H-form were 
expectedly less active than the corresponding samples 
No. 1 and No. 2 with the same groups in Na-form. This 
is due to the lower concentration of chlorine in them 
and the structural features of these functional groups. 
We assume that in the case of Na-forms, the dissociation 
of the N-Na bond is possible, which facilitates the emis-
sion of active chlorine from the formed anion; in the 
case of the H-form, such a process is less likely. In ad-
dition, microorganisms can be inactivated upon direct 
contact with the polymer. In the case of the more hydro-
philic -N(Na)-Cl group, this interaction seems to be 
more effective than for the -N(H)-Cl group. The largest 
growth inhibition zones were observed around di-
chloro-substituted samples No. 5 and No. 6, which, 
taking into account the previously established lower 
rate of chlorine emission from them [46, 47], is better 
explained by the higher concentration of immobilized 
chlorine. However, it should be noted that the direct 
correlation “chlorine concentration – inhibition zone 
diameter” was not observed in all cases.

Of the microorganisms, P. aeruginosa was found 
to be the least sensitive to the action of studied poly-
mers; nevertheless, the activity of all samples against it 
was pronounced. The increased resistance of this micro-
organism to active chlorine was described earlier [56]. 
There were no significant differences in the effective-
ness of polymer samples on standard and hospital 
strains. Data regarding the antimicrobial activity of 
materials against standard microorganisms are general-
ly consistent with those previously obtained. It has been 
repeatedly confirmed that the activity of chlorine 
preparations in the presence of an organic load, which 
in our case is the nutrient medium itself, is significantly 
reduced due to the consumption of a significant amount 
of active chlorine for interacting directly with this me-
dium. Therefore, the wide zones of growth inhibition 
obtained even under the conditions of the described 
experiments indicate the extremely high antimicrobial 
activity of the synthesized polymers and, accordingly, 
the expediency of their use for the creation of medical 
devices with increased resistance to microbial contami-
nation and antiseptic/disinfection properties. Suspen-
sion microbiological tests, which will be the subject of 
our separate research, will likely demonstrate this more 
clearly. The interaction of chlorine with agar, the layer 
thickness of which is difficult to control in these exper-
iments, can also explain some of the “fallouts” from the 
described dependences, for example, the greater sample 
activity No. 2 against S. aureus (H).

Experiments to determine resistance to microbial 
penetration have shown that all studied «fabric» samples 
of chlorine-active polymers are impermeable to 

S. aureus, as opposed to an «uncharged» control 
sample. The conditions of the experiment do not allow 
us to determine what is more responsible for this effect: 
mechanical retention of the microorganism upon direct 
contact with the fibre for a time sufficient for its inacti-
vation or rapid emission of active chlorine in a concen-
tration sufficient for inactivation. However, considering 
the permeability of the control sample, it can be stated 
that it is the presence of immobilized chlorine that plays 
the key role and not the physical and mechanical prop-
erties of the carrier, which do not change significantly 
during functionalization. This property of the synthe-
sized polymers confirms their prospects for manufac-
turing regenerated antimicrobial filter materials and 
medical devices based on them. 

Study limitations. The limitations of this study 
include the impossibility of accurately determining the 
mechanism of suppression of microorganisms upon con-
tact with the polymer, the difficulty in calculating the 
effective concentration of immobilized active chlorine, 
as well as the interaction of the released active chlorine 
with the components of microbiological nutrient media, 
which can lead to an underestimation of the growth inhi-
bition zones around the sample.

Prospects for further research. In the course 
of further research, we will study the microbial perme-
ability of these polymers when contaminated air is 
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passed through them to determine the possibility of 
their use to protect respiratory organs from aerogenic 
infectious diseases. In addition, the absence of acute 
toxicity upon inhalation of high-purity vapours of ac-
tive chlorine, which can theoretically be released into 
the treated air in this case, has been recently proved by 
us in the model experiment [57]. Also, in vivo research 
on the application of such materials for the treatment 
of wounds of various origins and conditions will be 
continued.

6. Conclusion
Synthesized fibrous polymers with immobilized 

N-Chlorosulfonamide groups of various structures ex-
hibit pronounced antimicrobial activity against both 
standard and hospital strains of microorganisms and 
demonstrate high resistance to microbial penetration. 
Such properties of these materials confirm their pros-
pects for creating a wide range of medical products: 

wound dressings, personal protective equipment, antimi-
crobial wipes, special clothes, water and air filters, etc.
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