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It is known that processes occurring in binary system melts affect the crystallization pro-

cess and the phase composition of alloys. To predict these processes, we should determine
the region of thermodynamic stability of the melt. In this paper, the structural prop-

erties of hypoeutectic and hypereutectic alloys in Al–Cu system are studied depending

on the heating temperature above the liquidus line and aftercooling rate. It is shown
that overheating of Al–Cu melts to 150 K above the liquidus line and further cooling

leads to complete suppression of the process of formation of primary aluminum crystals
in hypoeutectic alloys and Al2Cu phase in hypereutectic alloys. For the first time, by

accounting in Gibbs energy of binary Al–Cu alloy for the first degree approximation of

high-temperature expansion of thermodynamic potential, the dependence of tempera-
ture of line of the melt thermodynamic stability on copper content in alloy is obtained.

Keywords: Al–Cu alloys; Al2Cu phase; eutectics; thermodynamic stability of a liquid.
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1. Introduction

The interest in Al–Cu system alloys over the last few decades arises from the

widespread use of these alloys in the aircraft industry and in transport. According

to the state diagram of Al–Cu system proposed by Murray, the eutectics is formed

at copper content of 33 wt.% and aluminum content of 67 wt.% and is represented

structurally by α-solid solution of copper in aluminum and intermetallic Al2Cu

compound.1,2

It is known that at temperatures exceeding the crystallization tempera-

ture, in Al–Cu melts, the microconcentration inhomogeneity is observed.3–7 The
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structure-sensitive methods, one of which is viscosity-temperature study of the

melt,8,9 are known to detect the occurrence of microcomplexes or short-range order

in the liquid of Al–Cu alloys. The study of the viscosity-temperature dependence

of Al–Cu alloys revealed the divergence of the heating and cooling curves (hystere-

sis loops); these loops are associated with the formation of complexes in the alloy

liquid.8–13 For the alloy of eutectic composition (copper content is of 17.0 at.%),

the intersection of heating and cooling viscosity curves occurs at the temperature

of 1123 K,8 and in Ref. 10, it is stated that the branching temperature for pure

aluminum is 1173 K, for 10 at.% and 17.1 at.% Cu alloys — 1223 K, 1323 K for 25

at.% and 40 at.% Cu and 1123 K for 32.2 at.% Cu. The authors of Ref. 11 think

otherwise and point out that there is a hysteresis on the temperature-density curves

of the melt for the 17 at.% Cu eutectic alloy below a temperature of 1023 K and for

the alloy with copper content of 23 at.% below a temperature of 1073 K. It should

be noted that experimental study of the temperature dependence of the viscosity

of alloy with copper content of 30 at.% shows that when the melt is heated upto a

temperature above 1023 K, there is a sharp decrease in the coefficient of viscosity

of the alloy, indicating that heating of alloys above this temperature is unpractical,

since the homogeneous melt is already formed in the given range.12

Investigation of density of the melt with copper content of 0–100 wt.% by the

method of penetrating gamma-radiation in the range from the room-temperature to

1573–1673 K shows that the dependence of the melt density on aluminum content in

the alloy is non-monotonic with extrema near temperatures of the melts of the com-

position of Cu3Al, Cu2Al, CuAl and CuAl2, which indirectly indicate the conserva-

tion of these atomic groups in the liquid phase across the entire temperature range

under consideration, and for real alloys, the approximation of viscosity-temperature

dependence will not be a linear function.13

Study of dependence of function value of the structural parameter on temper-

ature and copper content in alloy shows that for the alloy of eutectic composition

(Al83Cu17), there is a decrease in structural parameter within the temperature

range of 1023–1253 K, and occurrence of sharp peak shows that there is an ordered

structure.14 In Ref. 15, occurrence of the peak was observed in the temperature

range of 835–935 K, and in Ref. 3, in the study of Al83Cu17 and Al80Cu20 melts,

peaks were detected at 885 and 1000 K, respectively. The authors of these papers

note that a slight overheating of alloys above the liquidus line leads to significant

decrease of complexes in the liquid.

Similar results were obtained by the authors of Ref. 16, who indicate that below a

temperature of 1000 K, the number of icosahedral clusters in the Al80Cu20 melt rises

sharply, and the change in melt viscosity when the temperature decreases illustrates

the anomalous structural dynamics and the occurrence of locally-arranged clusters.

The existence of complexes in eutectic and peritectic melts affects the structure

and properties of corresponding solid alloys, which is important for casting, brazing,

welding and in making of composite materials based on eutectic matrix. The effect

on formation of complexes in the melt enables to improve the properties of solid
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alloys, both crystalline and amorphous. Nowadays, all available information on

temperature dependence of Al–Cu structural state is not sufficient to allow general

conclusions about the relationship between liquid and solid states near the phase,

transition point.

Thus, the purpose of this work is to investigate the structural properties of

Al–Cu alloys depending on the temperature of alloy heating above the liquidus line

and cooling rate, and to determine the homogeneity limit of the melt.

2. Materials and Methods

The investigation was carried out for the specimens of Al–Cu alloys with copper

content of 25.0–36.0 wt.%, the rest was aluminum. To obtain such alloys, we used

the furnace charge of the composition: 99.9 wt.% aluminum and 99.9 wt.% copper.

Smelting of specimens was performed in a Tammann furnace with graphite heater

in alundum crucibles. The cooling rate of alloys was 10 K/s. Some specimens were

prepared in a similar way, but after heating were casted into V-shaped molds; as a

result, in the process of cooling in the wide part of the wedge, the cooling rate was

102 K/s and in the edge it was 104 K/s.

To determine the chemical composition of alloy, chemical and spectral analyses

were used.17 To determine the temperature of phase transformations, differential

thermal analysis by derivatograph with heating rate of 2 K/min was used.

The phase composition of alloys was determined by X-ray microanalysis,

by means of JSM-6490 microscope, as well as by means of optical micro-

scope, “Neophot-21”. The X-ray structure analysis was performed with DRON-3

diffractometer in monochromated Cuα radiation.

3. Results and Discussion

The structure of hypoeutectic alloys of Al–Cu system after heating to 873 K and

further cooling with rate of 102 K/s consists of primary Al dendrites and regular

Al + Al2Cu eutectics, which corresponds after crystallization to the phase compo-

sition of the system state diagram.1 As the cooling rate rises to 103–104 K/s, the

volume fraction and size of primary aluminum dendrites decrease and those for the

eutectics increase.

The microstructure of Al–Cu hypoeutectic alloys after heating to 100 K above

the liquidus line and cooling with rate of 102 K/s is represented by primary

aluminum dendrites and eutectics. By increasing the cooling rate to 103–104 K/s,

the volume fraction and size of primary aluminum dendrites decrease and those for

the eutectics increase compared with pretreatment of specimens, which correlates

with the results of authors of Ref. 18.

Preheating of hypoeutectic alloys to 150 K above the liquidus line and

aftercooling with rate of 103–104 K/s results in the formation of eutectics with more

dispersed structure compared to specimens cooled at lower rate (Fig. 1). Besides,

there are no primary aluminum crystals in the structure.

2050057-3

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

W
E

ST
E

R
N

 O
N

T
A

R
IO

 o
n 

03
/2

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 25, 2020 14:31 IJMPB S0217979220500575 page 4

N. Filonenko

(a) (b)

Fig. 1. Microstructure of alloy wedge after presuperheating of 71.0 wt.% Al alloy liquid to 150 K

and aftercooling with rate of (a) 102 K/s and (b) 104 K/s.

In the heating thermogram of hypoeutectic alloy obtained after overheating

of the melt above the liquidus line to 150 K and further cooling with rate of

104 K/s, the eutectics smelting occurs at 823 K. However, there is no transfor-

mation in the alloy thermogram that would correspond to the formation of primary

crystals.

According to the results of X-ray, diffraction analysis of Al–Cu alloys with

overheating to 150 K and aftercooling at different speeds ranging from 102 to

104 K/s, a slight shift of lines for the solid solution of aluminum and Al2Cu phase

towards high angles is observed [Fig. 2(a)]. The results obtained can be explained

by the fact that the formation of supersaturated solid solution of copper occurs.

For hypereutectic 34.0–40.0 wt.% Cu alloys overheated to 50 K above the liq-

uidus line and cooled with rate of 102 K/s, the formation of primary Al2Cu crystals

and eutectics is observed, which corresponds to the Al–Cu state diagram.

(a) (b)

Fig. 2. Diffractogram of alloys with aluminum content of (a) 71.0 wt.% and (b) 63.0 wt.%.
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(a) (b)

Fig. 3. Microstructure of alloy wedge after presuperheating of the melt with Al–content of

63.0 wt.% to 150 K and aftercooling with rate of (a) 102 K/s and (b) 104 K/s.

The same sort of situation is observed in the study of microstructure after

overheating of hypereutectic alloys to 100 K above the liquidus line, to be exact,

there is further decrease in sizes of primary Al2Cu phase and increase in volume

fraction of the eutectics. While cooling of hypereutectic alloys with rate of 104 K/s,

the formation of quasi-eutectics and complete suppression of formation of primary

Al2Cu crystals are observed.

The consequent increase in the melt overheat temperature to 150 K and cooling

at 102 K/s is accompanied by significant decrease in size and volume fraction of

primary Al2Cu crystals [Fig. 3(a)]. Increase in cooling rate to 103–104 K/s leads to

complete suppression of the formation of primary Al2Cu crystals [Fig. 3(b)].

When the cooling rate is increased to 104 K/s, there is a slight shift of the lines

for aluminum and Al2Cu phase in the diffractogram [Fig. 2(b)]. These results can be

explained by the fact that the process of formation of primary phases is suppressed

by increasing the volume fraction of eutectics, possibly by changing the solubility

of copper in aluminum and aluminum in Al2Cu phase.

Thus, the melt overheating above the liquidus line and rapid cooling enabled to

investigate the high-temperature state of the melt.

The overheating of the hypoeutectic and hypereutectic Al–Cu alloys above the

liquidus line to 50–100 K and further cooling leads to decrease in volume fraction of

primary crystals and increase in volume fraction of the eutectics. The consequent

overheating of the alloys is accompanied by suppression of the formation of primary

aluminum crystals in hypoeutectic alloys and to suppression of Al2Cu phase in

hypereutectic alloys.

In this paper, it is shown experimentally that to obtain a homogeneous melt,

which lacks any microcomplexes, it is necessary to perform the overheating of the

melt to 100–150 K above the liquidus line in accordance with copper content in

the alloy. Our outcomes are in good agreement with the results of works, in which
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the findings of structure-sensitive methods for determining the structural state of

Al–Cu melts are presented.10–16

One of the important factors affecting the formation of alloys structure during

cooling is determining the stability of the liquid, namely the temperature at which

the liquid is homogeneous and there are no microcrystalline formations.

The Gibbs energy of the phase is known to be a function of independent variables

G = G(p, T, xi), where p is pressure, T is temperature, xi is chemical content of

elements in the compound, i = 1, 2 (x1 = xAl, x2 = xCu). Provided that there are

no external force and change in pressure (p = const.), the total differential of Gibbs

energy is

dG = dU − d(TS) + d(pV ) = −SdT +
∑
i=1,2

µidxi,

where U is internal energy.19

Correspondingly, the thermodynamic forces are

S = −
(
∂G

∂T

)
x1x2

and chemical potential

µi =

(
∂G

∂xi

)
T

.

To determine the stability of the phase,20 we find the variation of Gibbs energy

δG =

∞∑
n=1

1

n!

[
δT

∂

∂T
+ δx1

∂

∂x1
+ δx2

∂

∂x2

]n
G. (1)

The general condition of phase stability by Gibbs is that arbitrary variations

of the internal energy and external parameters of the system should not cause

both reversible and irreversible processes in the system (to keep the system in

equilibrium), so they must be such that

δU − TδS + pδV −
∑
i=1,2

µiδxi > 0, (2)

taking into consideration the relation between internal energy and free Gibbs energy

U = G+ TS − pV and the fact that

δS = −δ
(
∂G

∂T

)
xi

= −
(
∂δG

∂T

)
x1x2

, p = const.
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Let us expand the Gibbs energy as a power series in δT and δxi (1):

δG =

(
∂G

∂T

)
x1x2

δT +

(
∂G

∂x1

)
Tx2

δx1 +

(
∂G

∂x2

)
Tx1

δx2 +
1

2

[(
∂2G

∂T 2

)
x1x2

δT 2

+

(
∂2G

∂x21

)
T

δx21 +

(
∂2G

∂x22

)
T

δx22 + 2

(
∂2G

∂T∂x1

)
x2

δTδx1

+ 2

(
∂2G

∂T∂x2

)
x1

δTδx2 + 2

(
∂2G

∂x1∂x2

)
T

δx1δx2

]
+ · · ·

δG = −SδT + µ1δx1 + µ2δx2 +
1

2

[
−
(
∂S

∂T

)
x1x2

δT 2 +

(
∂µ1

∂x1

)
Tx2

δx21

+

(
∂µ2

∂x2

)
Tx1

δx22 + 2

(
∂µ1

∂T

)
x1x2

δTδx1 + 2

(
∂µ2

∂T

)
x1x2

δTδx2

+ 2

(
∂µ2

∂x1

)
Tx2

δx1δx2

]
+ · · · . (3)

To determine the derivative (
∂δG

∂T

)
x1x2

,

we consider only the first- and second-order terms in expansion (3)(
∂δG

∂T

)
x1x2

= −
(
∂S

∂T

)
x1x2

δT +

(
∂µ1

∂T

)
x1x2

δx1 +

(
∂µ2

∂T

)
x1x2

δx2

+
1

2

[
−
(
∂2S

∂T 2

)
x1x2

δT 2 +

(
∂2µ1

∂T∂x1

)
x2

δx21 +

(
∂2µ2

∂T∂x2

)
x1

δx22

+ 2

(
∂2µ1

∂T 2

)
x1x2

δTδx1 + 2

(
∂2µ2

∂T 2

)
x1x2

δTδx2

+ 2

(
∂2µ2

∂T∂x1

)
x2

δx1δx2

]
+ · · · . (4)

In Eq. (4), we take into account the equalities of mixed derivatives:(
∂2G

∂x1∂T

)
x2

=

(
∂2G

∂T∂x1

)
x2

= −
(
∂S

∂x1

)
Tx2

=

(
∂µ1

∂T

)
x1x2

,

(
∂2G

∂x2∂T

)
x1

=

(
∂2G

∂T∂x2

)
x1

= −
(
∂S

∂x2

)
Tx1

=

(
∂µ2

∂T

)
x1x2

,

(
∂2G

∂x1∂x2

)
T

=

(
∂2G

∂x2∂x1

)
T

=

(
∂µ1

∂x2

)
x1T

=

(
∂µ2

∂x1

)
x2T

.
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Inserting expressions (1), (3) and (4) in the stability condition (2) and consid-

ering the second-order terms, we obtain the inequality(
∂S

∂T

)
x1x2

δT 2 +

(
∂µ1

∂x1

)
Tx2

δx21 +

(
∂µ2

∂x2

)
Tx1

δx22 + 2

(
∂µ1

∂T

)
x1x2

δx1δT

+ 2

(
∂µ2

∂T

)
x1x2

δx2δT + 2

(
∂µ2

∂x1

)
Tx2

δx1δx2 ≥ 0.

If we have a quadratic form a11x
2
1 + a12x1x2 + a13x1x3 + · · · + annx

2
n ≥ 0, then

it will be positive when the determinant consisting of coefficients aij and all its

principal minors (Sylvester’s criterion) will be positive.

Thus, we obtain the determinant of stability21:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∂S

∂T

)
x1x2

(
∂µ1

∂T

)
x1x2

(
∂µ2

∂T

)
x1x2(

∂µ1

∂T

)
x1x2

(
∂µ1

∂x1

)
Tx2

(
∂µ2

∂x1

)
Tx2(

∂µ2

∂T

)
x1x2

(
∂µ1

∂x2

)
Tx1

(
∂µ2

∂x2

)
Tx1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5)

In order for system to be in equilibrium, D and leading elements in determinant

need to be positive.

The case D = 0 was first defined by Gibbs as a critical state of matter.22 During

supercritical transitions, the determinant and coefficients of stability pass through

finite minima that correspond to the growth of fluctuations. The locus of these

minima is low-stability line. It should be noted that for different coefficients of

stability, the low-stability lines may differ. This is why the line of lowered stability

for D, which includes all equilibrium characteristics of the system and therefore

best describes its stability, is used as a basis.23 The threshold case of supercritical

transitions, when fluctuations in the system reach the maximum level, and D and

stability coefficients pass zero minima, is the critical state. So, it is necessary to

study the condition dD = 0.

When calculating thermodynamic functions of the phases for the high-

temperature region, we take into consideration the first degree approximation of

high-temperature expansion for thermodynamic potential of binary alloy in the

form of infinite series in powers of 1/T .24

The energy of interaction between elements L12 depends on temperature. Let

us represent the temperature dependence of interaction energy as L12 = a + bT +

cT lnT . Using G0
1 and G0

2 data for pure components,25,26 and data for interaction

energy between components in the phase (a, b and c values),3 we obtained the

temperature dependence of Gibbs energy of the melt:

Gm = x1G
0
1 + x2G

0
2 +RT (x1 lnx1 + x2 lnx2) + x1x2L12 −

L2
12x

2
1x

2
2

2RTZ
. (6)
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Then the determinant of stability (5) with accounting for (6) is equal to

D =

[
−cx1x2

T
+
x21x

2
2(b+ c+ c lnT )2

RTZ
− x21x

2
2(a+ bT + cT lnT )(2b+ c+ 2c lnT )

RT 2Z

+
x21x

2
2(a+ bT + cT lnT )2

RT 3Z

] [(
RT

x1
− x22(a+ bT + cT lnT )2

RTZ

)
×
(
RT

x2
− x21(a+ bT + cT lnT )2

RTZ

)

−
(
a+ bT + cT lnT − 2x1x2(a+ bT + cT lnT )2

RTZ

)2
]

−
[
R(lnx1 + 1) + x2(b+ c+ c lnT ) +

x1x
2
2(a+ bT + cT lnT )2

RT 2Z

− 2x1x
2
2(a+ bT + cT lnT )(b+ c+ c lnT )

RTZ

]2(
RT

x2
− x21(a+ bT + cT lnT )2

RTZ

)
−
[
R(lnx2 + 1) + x1(b+ c+ c lnT ) +

x21x2(a+ bT + cT lnT )2

RT 2Z

− 2x21x2(a+ bT + cT lnT )(b+ c+ c lnT )

RTZ

]2(
RT

x1
− x22(a+ bT + cT lnT )2

RTZ

)
+ 2

[
a+ bT + cT lnT − 2x1x2(a+ bT + cT lnT )2

RTZ

]
×
[
R(lnx1 + 1) + x2(b+ c+ c lnT ) +

x1x
2
2(a+ bT + cT lnT )2

RT 2Z

− 2x1x
2
2(a+ bT + cT lnT )(b+ c+ c lnT )

RTZ

] [
R(lnx2 + 1) + x1(b+ c+ c lnT )

+
x21x2(a+ bT + cT lnT )2

RT 2Z
− 2x21x2(a+ bT + cT lnT )(b+ c+ c lnT )

RTZ

]
.

In order for state of the system to be stable, the condition dD = 0 should be

fulfilled:

dD =

(
∂D

∂T

)
x1x2

dT +

(
∂D

∂x1

)
x2T

dx1 +

(
∂D

∂x2

)
x1T

dx2 = 0.

This condition works when(
∂D

∂T

)
x1x2

= 0,

(
∂D

∂x1

)
x2T

= 0,

(
∂D

∂x2

)
x1T

= 0. (7)

The solution of system of Eqs. (7) is shown in Fig. 4.

Thus, the calculated line of thermodynamic stability of the liquid is in good

agreement with the results of experimental studies,4–6,12,14–16 to be exact with the

2050057-9

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

W
E

ST
E

R
N

 O
N

T
A

R
IO

 o
n 

03
/2

6/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



March 25, 2020 14:31 IJMPB S0217979220500575 page 10

N. Filonenko

Fig. 4. The line of thermodynamic stability in the Al–Cu state diagram.

line of concentration anomaly obtained for Al–Cu alloys. The analysis of results

showed that in order to obtain a homogeneous liquid of Al–Cu alloys without mi-

croheterogeneous structure in the form of short-range micro-areas, it is necessary

to perform overheating to 100–150 K depending on the copper content in alloy

(Fig. 4).

4. Conclusions

The Al–Cu alloys with copper content of 25.0–36.0 wt.% (the rest is aluminum) are

investigated in this paper and the obtained results are as follows:

• Overheating of the alloy liquid to 50–100 K above the liquidus line leads to the

formation of finely-dispersed eutectic structure, the size and volume fraction of

primary aluminum crystals in hypoeutectic alloys decrease along with those for

Al2Cu phase in hypereutectic alloys.

• Overheating of the melt to 150 K above the liquidus line and aftercooling with

rate of 103–104 K/s leads to complete suppression of formation of primary alu-

minum crystals in hypoeutectic alloys and Al2Cu phase in hypereutectic alloys,

correspondingly.

• For the first time, taking into consideration the contribution of the first-degree

approximation of high-temperature expansion of thermodynamic potential for

binary alloy to the Gibbs energy, we obtain the dependence of temperature of

thermodynamic stability for the melt on copper content in alloy.

The obtained results are relevant because they enable to explain the features of

crystallization process depending on overheating temperature.
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