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Перелік умовних скорочень

АКМ	 –	 активні кисневмісні метаболіти
АКМ	 –	 активні кисневмісні метаболіти
AMФ	 –	 аденозинмонофосфат
АПФ2/ACE2 – ангіотензинперетворювальний фермент 2 (angiotensin I converting enzyme 2)
ГРІ	 –	 гострі респіраторні інфекції 
ЕР	 –	 ендоплазматичний ретикулум
ЦД	 –	цукровий діабет 
3CLpro	 –	3-хімотрипсин-подібна протеаза (3-chymotrypsin-like protease) 
ACC	 –	Американський коледж кардіологів (American College of Cardiology), 
AHA	 –	Американська кардіологічна асоціація (American Heart Association) 
ALIX	 –	білок X, який взаємодіє з ALG2 (ALG2-interacting protein X)
ALK	 –	 кіназа анапластичної лімфоми (anaplastic lymphoma kinase)
AMPK	 – 	АМФ-активована протеїнкіназа (AMP activated protein kinase)
AP-1	 –	 активаторний протеїн-1 (activator protein-1)
ARIH	 –	 гомолог протеїну ariadne-1 сімейства домену RBR (ariadne RBR E3 ubiquitin protein ligase 

1)
ATF6	 –	фактор 6, що активує транскрипцію (activating transcription factor 6)
ATG9B	 –	  білок 9B, пов'язаний з аутофагією (AuTophaGy 9B)
BCL-2	 –	протеїн 2 B-клітинної лімфоми (B-Cell Leukemia/Lymphoma 2)
BTK	 –	 тирозинкіназа Брутона (Bruton's tyrosine kinase)
CALCOCO2/NDP52 – протеїн, що містить кальцій-зв'язувальний домен та спірально-спіральний 

домен 2 (calcium binding and coiled-coil domain 2)
CB1	 –	 канабіноїдні рецептори 1 типу (cannabinoid type 1) 
CbpC	 –	 холінзв'язувальний протеїн C (choline-binding proteins)
CHMP2A – білок мультивезикулярних тілець 2A (charged multivesicular body 2A)
CLEAR	 –	 елемент координованої експресії та регуляція лізосомальних генів (coordinated lysosomal 

expression and regulation)
CMA	 – 	 аутофагія, опосередкована шаперонами (chaperone-mediated autophagy)
COPII	 –	  везикули, облямовані комплексом II оболонкового протеїну (coat protein complex II)
DMV	 –	везикули з подвійною мембраною (double membrane vesicles)
DUB	 –	деубіквітинуючі ферменти (deubiquitinating enzymes)
EGFR	 –	рецептор епідермального фактору росту (epidermal growth factor receptor)
EGR1	 –	білок 1 реакції раннього зростання (early growth response 1)
EIF2AK3/PERK – кіназа 3 еукаріотичного фактору ініціації трансляції 2 α (eukaryotic translation 

initiation factor 2 alpha kinase 3/protein kinase RNA-like endoplasmic reticulum kinase)
ERGIC	 –	проміжний компартмент апарату Гольджі (endoplasmic reticulum golgi intermediate 

compartment)
ESC	 –	Європейське товариство кардіологів (European Society of Cardiolog)
ESCRT	 –	 ендосомальний сортувальний комплекс, необхідний для механізмів транспорту (endosomal 

sorting complexes required for transport)
eVLP	 –	оболонкові вірусоподібні частинки (enveloped virus-like particles)
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FBXO2	 –	протеїн 2, що містить F-box (F-box protein 2)
FIP200	 – 	білок 200 кДа, що взаємодіє з сімейством кіназ фокальної адгезії (focal adhesion kinase 

family interacting protein of 200 kDa) 
GABARAP – протеїн, асоційований з рецептором γ-аміномасляної кислоти (ГАМК) А типу (GABA 

type A receptor-associated protein)
GAP	 –	білки, що активують ГТФазу (GTPase-activating proteins)
GAS	 –	  бактерії Streptococcus групи A (Group A Streptococcus)
GBF1	 –	 гольджі брефельдін A резистентний фактор обміну гуанінових нуклеотидів (golgi brefeldin 

A resistant guanine nucleotide exchange factor 1)
GEF	 –	фактор обміну гуанінових нуклеотидів (guanine nucleotide exchange factor)
GlcNAc	 –	N-ацетилглюкозамін (N-acetylglucosamine)
GRAMD1A – протеїн 1A, що містить домен GRAM (GRAM domain containing 1A)
HBHA	 –	 гепарин-зв'язувальний гемагглютинін (heparin-binding hemagglutinin)
HEp-245	– людські епітеліальні клітини 245 (human epithelial 245)
HFSA	 –	Американське товариство серцевої недостатності (Heart Failure Society of America)
HMPV	 –	людський метапневмовірус (human metapneumovirus)
HOPS	 –	 комплекс гомотипічного злиття та сортування білків (homotypic fusion and protein sorting)
HRV	 –	риновірус людини (human rhinovirus)
HyPAS	 –	 гібридна пре-аутофагосомальна структура (hybrid pre-autophagosomal structure)
IAV	 –	вірус грипу А (influenza A virus)
IFITM	 –	 інтерферон-індукований трансмембранний протеїн
iPSCs	 –	людські індуковані стовбурові плюрипотентні клітини (induced pluripotent stem cells)
IRE1	 –	фермент-1, що потребує інозитол (inositol-requiring enzyme-1)
JAK	 –	янус кіназа (Janus kinase)
K	 –	лізинові залишки
LAMP1	 –	 протеїн 1, асоційований з мембраною лізосоми (lysosomal-associated membrane protein 1)
LAP	 –	фагоцитоз, пов'язаний з MAP1LC3/LC3 (LC3-associated phagocytosis)
LE/MVB	 –	пізня ендосома / мультивезикулярне тільце (late endosome / multivesicular body)
LIR	 –	регіон, який взаємодіє з LC3 (LC3 interacting region)
LRSAM1	– протеїн 1, багатий на лейцинові повтори і містить стерильний альфа-мотив (leucine rich 

repeat and sterile alpha motif containing 1)
LUBAC	 –	 комплекс складання лінійного убіквітину (linear ubiquitin assembly complex)
M	 –	  метіоніновий залишок
M2	 –	вірусний матричний білок 2 (matrix protein 2)
MAP1LC3/ LC3 – легкий ланцюг 3-β протеїну 1, асоційованого з мікротрубочками (microtubule-

associated protein 1 light chain 3-β/light chain 3) 
MARCH8	– протеїн 8, що містить асоційований з мембраною домен RING пальця типу CH (membrane 

associated ring-CH-type finger 8)
MCL-1	 –	мієлоїдний лейкоз 1 (myeloid leukemia 1)
MCOLN1/ TRPML1 – муколіпін 1 або TRP катіонний канал 1 (mucolipin 1/TRP cation channel 1)
MDP	 –	мурамілдипептид (muramyldipeptide)
MERS	 –	близькосхідний респіраторний синдром (Middle East respiratory syndrome)
MRSA	 –	метицилін-резистентний золотистий стафілокок (methicillin-resistant Staphylococcus 

aureus)
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mTORC1	– комплекс 1 мішені рапаміцину ссавців (mammalian target of rapamycin complex 1)
NBR1	 –	рецептор аутофагічного вантажу NBR1 або протеїн сусіднього гена BRCA1 (NBR1 

autophagy cargo receptor /neighbor of BRCA1)
NF-κB	 –	  ядерний фактор каппа B (nuclear factor kappa B)
NLR	 –	NOD-подібні рецептори (NOD-like receptors)
NOX2	 –	НАДФН-оксидаза 2 (NADPH oxidase 2)
NP	 –	нуклеопротеїн (nucleoprotein)
OPTN	 –	оптиневрин (optineurin)
PAMP	 –	патоген-асоційовані молекулярні патерни (pathogen-associated molecular pattern)
PAS	 –	пре-аутофагосомальна структура (pre-autophagosomal structure)
PcAV	 –	бактерицидні аутофагічні вакуолі (bactericidal autophagic vacuole)
PCDII	 –	програмована клітинна загибель II типу (type II programmed cell death)
PcLV	 –	фагосомоподібні вакуолі (phagosome-like vacuole)
PE	 –	фосфатидилетаноламін (phosphatidylethanolamine)
PGC1α	 –	коактиватор ядерного рецептора α, активованого проліфератором пероксисом (co-

activator of the nuclear receptor peroxisome proliferator-activated receptor α)
PGN	 –	пептидоглікан (peptidoglycan)
PGRP	 –	рецептори пептидогліканів (peptidoglycan receptors)
PI 	 –	фосфатидилінозитол (phosphatidylinositol)
PI3K	 –	фосфатидилінозитол-3-кіназа (phosphatidylinositol 3-kinases)
PI3KC3	 –	  комплекс фосфатидилінозитол 3-кінази III класу (class III phosphatidylinositol 3-kinase)
PKC	 –	протеїнкіназа C (protein kinase C)
PLEKHM1 – протеїн 1 сімейства M, що містить домен гомології плекстрину та домен RUN (pleckstrin 

homology and RUN domain containing M1)
PLY	 –	пневмолізин (pneumolysin)
PPARγ	 –	 рецептори γ, активовані проліфератором пероксисом (peroxisome proliferator-activated 

receptors γ)
PRKN	 –	RBR E3 убіквітин протеїнлігаза PARKIN (PARKIN RBR E3 ubiquitin protein ligase)
PRR	 –	рецептори розпізнавання образів (pattern recognition receptors)
PtdIns(3)P –  фосфатидилінозитол-3-фосфат (phosphatidylinositol 3-phosphate)
PTEN	 –	 гомолог фосфатази та тензину (pohosphatase and tensin homolog)
RdRp	 –	РНК-залежна РНК-полімераза (RNA-dependent RNA polymerase),
RILP	 –	протеїн, що взаємодіє з Rab (Rab interacting lysosomal protein)
RIPK2	 –	 серин-треонінова кіназа 2 (receptor interacting serine / threonine kinase 2)
RLR	 –	RIG-I-подібні рецептори (retinoic acid-inducible gene-I-like receptors)
RNF31	 –	білок 31 містить домен RING пальця (ring finger protein 31)
RSV	 –	респіраторно-синцитіальний вірус (respiratory syncytial virus)
SASP	 –	секреторний фенотип, асоційований зі старінням (senescence-associated secretory 

phenotype)
SERCA	 –	  малий трансмембранний регулятор іонного транспортера 1 (small transmembrane 

regulator of ion transport 1)
SLO	 –	 стрептолізин O (streptolysin O)
SLR	 –	рецептори, подібні до секвестосоми-1 (sequestosome-1-like receptors)
SMURF1 – SMAD-специфічна E3 убіквітин протеїнлігаза 1 (SMAD specific E3 ubiquitin protein ligase 1)
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SNAP29 – білок 29, асоційований з синаптосомою (synaptosome-associated protein 29)
SQSTM1/p62 – секвестосома 1 (sequestosome 1)
STX17	 –	 cинтаксин 17 (syntaxin 17)
Syk	 –	 селезінкова тирозинкіназа (spleen tyrosine kinase)
TAX1BP1 – білок 1, пов'язаний з Tax1 (Tax1 binding protein 1)
TBC1D5 – білок 5 сімейства доменів TBC1 (TBC1 domain family member 5)
TFEB	 –	фактор транскрипції EB (transcription factor EB)
TGN	 –	мережа транс-Гольджі (trans-Golgi network)
TipC	 –	протеїн трансферу ліпідів (lipid transfer protein)
TLR	 –	Toll-подібні рецептори (toll-like receptors)
TMPRSS2 – трансмембранна серинова протеаза 2 (transmembrane serine protease 2)
TPC	 –	двопорові канали (two-pore channels)
TRAF6	 –	 фактор 6, асоційований з рецептором фактору некрозу пухлин (TNF receptor associated 

factor 6)
TRAPPIII – протеїновий комплекс транспортування білкових частинок III (transport protein particle III)
TRIM5α – протеїн 5α, що містить трипартитурний мотив (tripartite motif containing 5α)
TRK	 –	мітоген-активована протеїнкіназа (mitogeninase tropomyosin receptor kinase)
UBA	 –	домен, асоційований з убіквітином (ubiquitin-associated domain)
ULK1/2	 –	 комплекс 1/2 серин-треонінової unc51-подібної аутофагічної кінази, що активує (unc51-

like autophagy activating kinase)
UPR– 	 –	відповідь на неправильно згорнуті білки (unfolded protein response)
VAPA	 –	  VAMP-асоційований білок A (VAMP associated protein A)
VAPB	 –	VAMP-асоційований білок B (VAMP associated protein B)
VEGFR	 –	рецептор судинного ендотеліального фактору росту (vascular endothelial growth factor 

receptor)
VMP1	 –	протеїн 1 мембрани вакуолі (vacuole membrane protein 1)
VPS	 –	  вакуолярне сортування білків (vacuolar protein sorting)
VPS13A – гомолог А протеїну 13 сімейства вакуолярного сортування білків (vacuolar protein sorting 

13 homolog A)
VPS34	 –	протеїн 34 вакуолярного сортування білків (vacuolar protein sorting 34)
β-CoV	 –	бета-коронавірус (β-coronavirus)
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ВСТУП

В
иникнення та перебіг гострих респіраторних ін-
фекцій (ГРІ) значною мірою залежать від ефек-
тивності захисних механізмів організму, зокрема 

від рівня активності аутофагії. Термін «аутофагія» було введено 
у науковий обіг у 1963 році бельгійським цитологом і біохіміком 
Крістіаном Рене де Дювом (Christian René de Duve). За свої до-
слідження структури та функцій клітин, він, разом із бельгійсько-
американським біохіміком Альбертом Клодом (Albert Claude) та 
американським клітинним біологом Джорджем Емілем Паладе 
(George Emil Palade), був удостоєний Нобелівської премії з фізіо-
логії або медицини 1974 року [1–3]. Молекулярні основи аутофагії, 
зокрема роль генів AuTophaGy (Atg), були детально досліджені 
японським ученим Йосинорі Осумі (Yoshinori Ohsumi), який за 
свої відкриття також отримав Нобелівську премію з фізіології 
або медицини 2016 року [4–6].

Аутофагія є еволюційно консервативним механізмом, який 
забезпечує деградацію пошкоджених внутрішньоклітинних білків, 
молекулярних агрегатів і надлишкових або дефектних органел. 
Цей процес також може спричиняти програмовану клітинну 
смерть типу II (programmed cell death type II – PCDII). Наразі 
виділяють три основні форми аутофагії, що відповідають за 
розпізнавання та транспорт внутрішньоклітинного матеріалу 
до лізосом для ферментативного розщеплення: макроаутофа-
гія, мікроаутофагія та аутофагія, опосередкована шаперонами 
(chaperone-mediated autophagy – CMA) [7–10]. Макроаутофагія є 
домінуючою формою цього процесу. Під час неї пошкоджені або 
надлишкові убіквітиновані органели чи білки ізолюються двомем-
бранною структурою, відомою як фагофор або пре-аутофагосо-
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мальна структура (pre-autophagosomal structure – PAS). Фагофор 
формує аутофагосому, яка зливається з лізосомою, де вміст 
розщеплюється лізосомальними ферментами. Мікроаутофагія 
передбачає пряме поглинання літичними органелами, такими 
як ендосоми чи лізосоми, частини цитоплазми з матеріалом, що 
підлягає деградації. Аутофагія, опосередкована шаперонами, 
характеризується високою селективністю та спрямована на 
білки з мотивом, подібним до KFERQ (Lys-Phe-Glu-Arg-Gln), які 
розпізнаються шапероном HSPA8/HSC70 [11–14].

Аутофагію поділяють на селективну та неселективну форми. 
Макроаутофагія, залежно від типу вантажу, може бути несе-
лективною, коли секвеструється частина цитоплазми для за-
безпечення клітинного метаболізму, або селективною, коли 
деградуються специфічні внутрішньоклітинні мішені. Селективна 
аутофагія охоплює такі процеси, як ЕР-фагія (деградація ен-
доплазматичного ретикулуму), лізофагія (деградація лізосом), 
мітофагія (деградація мітохондрій), нуклеофагія (деградація 
ядра клітини), пексофагія (деградація пероксисом), рибофагія 
(деградація рибосом), агрефагія (деградація агрегованих біл-
ків), ліпофагія (деградація ліпідів), феритинофагія (деградація 
феритину) та ксенофагія (деградація внутрішньоклітинних ін-
фекційних агентів та їх дериватів) [15–19].

Ксенофагія, що спрямована на деградацію вірусів, отримала 
назву вірофагія [20]. За аналогією, ксенофагію бактерій можна 
позначити як бактеріофагію, а грибів – як фунгофагію.

Встановлено, що активація ксенофагічних механізмів до-
зволяє клітинам макроорганізму ефективно елімінувати вну-
трішньоклітинні патогени. Рівень активності ксенофагії прямо 
корелює зі зниженням бактеріального та вірусного навантаження, 
а також із виживанням експериментальних тварин у моделях 
летальних інфекційних захворювань. Проте в процесі еволюції 
патогенні мікроорганізми розвинули молекулярні механізми, які 
дозволяють протистояти або уникати ксенофагічної деградації. 
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Баланс між активністю ксенофагічних механізмів макроорганіз-
му та системами патогенів, що перешкоджають їх дії, значною 
мірою визначає ймовірність розвитку інфекції, її перебіг і кінцевий 
результат [6; 21].

Незважаючи на численні докази важливості ксенофагії 
для саногенезу, перебігу та результату гострих респіраторних 
інфекцій, молекулярні механізми цього процесу залишаються 
недостатньо дослідженими у вітчизняній науковій літературі, що 
вказує на потребу подальших досліджень у цій сфері.
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РОЗДІЛ 1.  
ІНІЦІАЦІЯ КСЕНОФАГІЇ  
ПРИ ГОСТРИХ РЕСПІРАТОРНИХ 
ІНФЕКЦІЯХ

1.1.	 Загальні уявлення про ксенофагію

К
сенофагія є спеціалізованою формою селективної 
аутофагії, що забезпечує деградацію внутріш-
ньоклітинних інфекційних агентів. Доведено, 

що цей механізм використовується різними типами клітин, зо-
крема епітеліальними клітинами та макрофагами, для захисту 
організму від патогенів, розташованих 
інтрацелюлярно [22]. Уперше фено-
мен ксенофагії описала професорка 
мікробіології Університету штату Огайо 
(США) Ясуко Рікіхіса (Yasuko Rikihisa) 
у 1984 році (рис. 1). Її дослідження 
показали, що інфікування грамнега-
тивними бактеріями роду Rickettsia 
спричиняє формування аутофагосом 
у поліморфноядерних лейкоцитах [23]. 
На сьогодні ідентифіковано понад 40 
білків, гени яких асоційовані з регуля-
цією та виконанням процесів аутофагії 
(табл. 1) [24]. Рис. 1. Мікробіолог  

Ясуко Рікіхіса
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У процес аутофагії залучені п’ять функціональних кластерів 
ATG: 1) комплекс 1/2 серин-треонінової unc51‑подібної аутофа-
гічної кінази, що активує (unc51‑like autophagy activating kinase – 
ULK1/2); 2) комплекс фосфатидилінозитол 3‑кінази III класу (class 
III phosphatidylinositol 3‑kinase – PI3KC3); 3) система транспор-
тування ATG9 (ATG9A та ATG2A); 4) убіквітин-подібні білки двох 
систем кон’югації (ATG12, ATG5, ATG16 та ATG8, ATG7, ATG3). 
Комплекс ULK1/2 бере участь в ініціації аутофагії, комплекс 
PI3KC3 – у мембранній нуклеації; тример трансмембранного білка 
ATG9 – у формуванні та елонгації фагофору; системи кон’югації – 
в елонгації фагофору та формуванні аутофагосом [24; 27; 28].

Основним завданням ксенофагії є деградація внутрішньо-
клітинних збудників інфекційних захворювань та їх продуктів 
життєдіяльності. Крім елімінації інфекційних внутрішньоклітин-
них патогенів, ксенофагія асоційована з аутофагією, яка сприяє 
зниженню активності прозапальних сигнальних шляхів, що 
призводить до запобігання виникненню надзвичайної запальної 
реакції та обмеженню пошкодження таргетних тканин [29].

Однак деякі респіраторні віруси, такі як: риновірус, бета-ко-
ронавірус (β-coronavirus – β-CoV), що викликає важкий гострий 
респіраторний коронавірусний синдром 2 (severe acute respiratory 
syndrome coronavirus 2 – SARS-CoV‑2), використовують механізми 
аутофагії посилення активності своєї реплікації [30; 31].

1.2. Стадії ксенофагії

Процес елімінації внутрішньоклітинно розташованих ін-
фекційних агентів та їх продуктів життєдіяльності реалізується 
у вигляді послідовних стадій раннього та завершального етапів 
ксенофагії. До раннього етапу як аутофагії, так і ксенофагії нале-
жать такі стадії, як ініціація та зародження фагофору; елонгація 
фагофору; а до завершального етапу – формування та дозрівання 
аутофагосоми, а також деградація ксенобіологічних молекул [24; 
32]. Стадії раннього етапу ксенофагії наведені на рис. 2.
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1.2.1. Ініціація ксенофагії

1.2.1.1. Механізми ініціації ксенофагії
1.2.1.1.1. Активація комплексу ULK1/2
В ініціації ксенофагії, як селективної форми макроаутофагії, 

бере участь комплекс ULK1/2, який складається з кінази ULK1/2, 
протеїну ATG13, що є мішенню mTORC1, ATG13‑зв’язувального 
протеїну ATG101 та каркасного білка сімейства FAK – FIP200 
(рис. 3) [33–35].

1.2.1. Ініціація ксенофагії

1.2.1.1. Механізми ініціації ксенофагії

1.2.1.1.1. Активація комплексу ULK1/2

В ініціації ксенофагії, як селективної форми макроаутофагії, бере 

участь комплекс ULK1/2, який складається з кінази ULK1/2, протеїну ATG13, 

що є мішенню mTORC1, ATG13-зв'язувального протеїну ATG101 та 

каркасного білка сімейства FAK – FIP200 (рис. 3) [33–35].

Рис. 3. Внутрішньоклітинні сигнальні шляхи ініціації ксенофагії
Примітка: AMPK – АМФ-активована протеїнкіназа (AMP activated protein kinase);

mTORC1 – комплекс 1 мішені рапаміцину ссавців (mammalian target of rapamycin complex 
1); FIP200 – білок 200 кДа, що взаємодіє з сімейством кіназ фокальної адгезії (focal 
adhesion kinase family interacting protein of 200 kDa).

Внутрішньоклітинні молекулярні події, що призводять до зниження 

активності серин-треонінової кінази mTORC1, закономірно викликають

активацію комплексу ULK1 та його транслокації до мембран рециркулюючих 

ендосом, які формуються при злитті везикул, таких як: везикули, 

відшнуровані від мережі транс-Гольджі (trans-Golgi network – TGN);

везикули що походять з цитолеми або проміжного компартменту апарату 

Гольджі (endoplasmic reticulum golgi intermediate compartment – ERGIC) або 

Комплекс ULK1

FIP200

ATG13 ULK1

ATG101

ATG9 Комплекс PI3KC3

↓ mTORC1

↓ PI3K-AKT

↑ AMPK

Рис. 3. Внутрішньоклітинні сигнальні шляхи ініціації ксенофагії
Примітка: AMPK – АМФ-активована протеїнкіназа (AMP activated protein 
kinase); mTORC1 – комплекс 1 мішені рапаміцину ссавців (mammalian target of 
rapamycin complex 1); FIP200 – білок 200 кДа, що взаємодіє з сімейством кіназ 
фокальної адгезії (focal adhesion kinase family interacting protein of 200 kDa).

Внутрішньоклітинні молекулярні події, що призводять до 
зниження активності серин-треонінової кінази mTORC1, зако-
номірно викликають активацію комплексу ULK1 та його трансло-
кації до мембран рециркулюючих ендосом, які формуються 
при злитті везикул, таких як: везикули, відшнуровані від мережі 
транс-Гольджі (trans-Golgi network – TGN); везикули що похо-
дять з цитолеми або проміжного компартменту апарату Гольджі 
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(endoplasmic reticulum golgi intermediate compartment – ERGIC) 
або гібридної пре-аутофагосомальної структури (hybrid pre-
autophagosomal structure – HyPAS). Відомо, що підвищення рівня 
активності кінази mTORC1 пов’язано з пригніченням аутофагії та 
посиленням синтезу нуклеотидів білків та ліпідів; а інактивація 
кинази mTORC1, опосередкована дефіцитом амінокислот або 
активацією протеїнкінази AMPK, обумовленої дефіцитом глюкози, 
викликає рекрутування комплексів ULK1 і PI3KC3 на мембрану 
ендосом та ініціацію аутофагії. В умовах, що відрізняються висо-
ким рівнем поживних речовин у внутрішньоклітинному просторі, 
спостерігається активація кинази mTORC1, яка гіперфосфорилює 
протеїн ATG13 та блокує взаємодію ATG13 з ULK1 та FIP200. 
Також встановлено, що фактори росту активують, а збудження 
рецептора інсуліну інгібує кіназу mTORC1 [36; 37].

Після активації комплекс ULK1 фосфорилює власний про-
теїн 1 мембрани вакуолі (vacuole membrane protein 1 – VMP1) та 
протеїни BECN1 і ATG14L, що індукує каталітичну субодиницю 
VPS34 комплексу PI3KC3 та призводить до суттєвого збільшення 
генерації фосфатидилінозитол‑3‑фосфат (phosphatidylinositol 
3‑phosphate – PtdIns(3) P) [38].

Також активований комплекс ULK1 на мембранних сайтах 
ініціації аутофагії сприяє рекрутингу єдиного трансмембран-
ного протеїну сімейства ATG – ATG9. У ссавців ідентифіковано 
два гомологи протеїну ATG9 – ATG9A і ATG9B, причому ATG9A 
експресується убіквітарно, а ATG9B – у тканинах плаценти та 
гіпофізу [39; 40]. Протеїн ATG9 є фосфоліпідною скрамблазою, 
яка здійснює перерозподіл молекул фосфоліпідів у мембранах 
везикул та фагофору. У везикулярних мембранах протеїн ATG9 
існує у вигляді тримера. Везикули, що містять ATG9, спочатку 
формуються в ЕР, з якого вони переміщаються в апарат Гольджі, 
де відбувається їхнє дозрівання. Зрілі везикули, що містять 
ATG9, походять з TGN. Надалі рециркулюючі зрілі везикули, що 
містять ATG9, транспортуються в цитоплазматичний компартмент, 
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розташований у безпосередній близькості від ЕР. Вважають, що 
везикули, які містять ATG9, є джерелом мембранного матеріалу, 
який використовується для формування ізолюючої мембранної 
структури та елонгації фагофорів під час раннього етапу ауто-
фагії [36; 41].

1.2.1.1.2. Мембранна нуклеація
Везикули, що містять комплекс ULK1, та везикули, що містять 

комплекс ліпідкінази PI3KC3, транспортуються до сайтів ініціації 
аутофагії, які локалізуються на мембрані ЕР, де комплекс ULK1 
активує комплекс PI3KC3. Ідентифіковано, що основними мо-
лекулярними компонентами комплексу PI3KC3 є протеїни, таки 
як ATG14, ATG15, фактор BECN1 (BECLIN 1) та представники 
системи вакуолярного сортування білків (vacuolar protein sorting – 
VPS). Активований комплекс PI3KC3 на мембрані ЕР фосфо-
рилює молекулу фосфатидилінозитола (phosphatidylinositol – 
PI), зумовлюючи генерацію PtdIns(3) P. Накопичення молекул 
PtdIns(3) P на сайті ініціації аутофагії мембрани ЕР викликає: 
1) формування омегасом на мембрані ЕР та 2) рекрутинг про-
теїнів, що беруть участь у складанні та елонгації чашоподібного 
двомембранного фагофору (рис. 4) [25; 38; 42].
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У ссавців комплекс PI3KC3 представлений двома варіантами: 
типом I (PI3KC3-CI) та типом II (PI3KC3-CII), які відрізняються 
варіантами протеїнів VPS, присутніх у цих комплексах. Комплекс 
PI3KC3-CI містить протеїн 34 вакуолярного сортування білків 
(vacuolar protein sorting 34 – VPS34), а комплекс PI3KC3-CII – 
протеїн VPS38. Комплекс PI3KC3-CI є основним компонентом 
мембранної нуклеації, а комплекс PI3KC3-CII асоційований із 
дозріванням аутофагосом. Комплекс PI3KC3-C1 складається 
з п’яти субодиниць: ATG14, BECN1, NRBF2, VPS15, VPS34. 
Протеїни ATG14, BECN1 і VPS34 пов’язують комплекс PI3KC3-C1 
з мембранами, а протеїнкіназа VPS15 функціонує як регулятор-
на субодиниця ферменту VPS34. Згенеровані на сайті ініціації 
аутофагії молекули PtdIns(3) P діють як сигнальні елементи, 
які викликають формування омегасом і рекрутують протеїни, 
такі як білок 2, що містить повтори домену WD, який взаємодіє 
з фосфоінозітідом (WD repeat domain phosphoinositide-interacting 
protein 2 – WIPI2B; ортолог ATG18) та білок 1, що містить до-
мен цинкового пальця FYVE (zinc finger FYVE-type containing 
1/double FYVE containing protein 1 – ZFYVE1/DFCP1), який во-
лодіє АТФазною активністю. Протеїн WIPI2 рекрутує комплекс 
ATG12-ATG5-ATG16L, який здійснює кон’югацію протеїнів ATG8 
з молекулою PI мембрани фагофору [43–47].

1.2.1.1.3. Зародження фагофору
Фагофори формуються з цитоплазматичної мембрани та/

або мембран клітинних органел, таких як: ЕР, TGN, рециркулюючі 
ендосоми, мітохондрії. Під час ксенофагії ЕР та апарат Гольджі 
відіграють ключову роль у біогенезі аутофагосом [48].

Локальне збагачення PtdIns(3) P мембрани ЕР призводить 
до формування мембранного субдомену, який отримав назву 
омегасома (omegasome). Омегасома є циліндричним випи-
нанням мембрани ЕР, форма якої схожа на прописну грецьку 
літеру омега з графемою Ω. Встановлено, що акумульований 
PtdIns(3) P в мембрані ЕР приваблює протеїн ZFYVE1/DFCP1 
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і з центру ZFYVE1/DFCP1‑позитивної кільцевої структури вини-
кає LC3‑позитивна ізолююча мембрана, яка щільно затиснута 
з двох сторін складками мембрани ЕР. Спочатку ізолююча мем-
брана фізично з’єднана з мембраною ЕР вузькою мембранною 
трубкою, у міру дозрівання ізолююча мембрана від’єднується 
від мембрани ЕР і стає самостійною чашоподібною структу-
рою. Одна омегасома може брати участь у формуванні кількох 
фагофорів. Однак виснаження пулу протеїну ZFYVE1/DFCP1 
не перешкоджає прогресу аутофагії [36; 42; 49–51].

Формування омегасом відбувається через 3 хвилини, а перші 
аутофагосоми з’являються через 10 хвилин після індукції ауто-
фагії [32]. Зрілі аутофагічні вакуолі ідентифікуються вже через 2 
години після зараження бактеріями Streptococcus pneumoniae [52].

При формуванні фагофорів як затравка використовуються 
везикули, які містять MAP1LC3/LC3, PI3KC3, ATG16L1, ULK1, 
а також везикули, які містять ATG9, які формуються з мембран 
TGN. У рекрутингу деяких везикул на ЕР беруть участь транс-
мембранні інтегральні білки: VAMP-асоційований білок A (VAMP 
associated protein A – VAPA), VAMP-асоційований білок B (VAMP 
associated protein B – VAPB) і cинтаксин 17 (syntaxin 17 – STX17). 
Протеїни, асоційовані з везикулами, безпосередньо взаємодіють 
із протеїнами ULK1, FIP200 та WIPI2 везикул (рис. 5) [53; 54].

Везикули, що містять ATG9, мобілізуються в ізолюючу мем-
брану омегасоми та мембрану фагофору за допомогою протеїно-
вого комплексу транспортування білкових частинок III (transport 
protein particle III – TRAPPIII). Показано, що в області ізолюючої 
мембрани збирається три везикули, що містять ATG9, причому 
кожна з них містить приблизно 27 молекул ATG9. Кількість мо-
лекул ATG9 на місці ініціації аутофагії спричиняє продуктивність 
генерації аутофагосом. Молекули ATG9 після фосфорилюван-
ня комплексом ініціації аутофагії ULK1 рекрутують протеїни 
MAP1LC3A/LC3A та WIPI1/2 на мембрану фагофору [55–57].



1.2. Загальні уявлення про ксенофагію	  | 29 

Ри
с.

 5
. Ф

ор
м

ув
ан

ня
 ф

аг
оф

ор
у

В
ак

уо
ль

Ц
ит

ол
ем

а

A
T

G
16

L
1

A
T

G
9 

A
T

G
9 

A
T

G
9 

U
L

K
1

U
L

K
1

L
C

3 

P
I3

K
C

3 

A
T

G
16

L
1 

Z
F

Y
V

E
1

Ре
кр

ут
ин

г 
U

L
K

1
та

 P
I3

K
C

3
на

 Е
Р

Ре
кр

ут
ин

г 
Z

F
Y

V
E

1
на

 Е
Р

Ф
ор

м
ув

ан
ня

 о
м

ег
ас

ом
и

P
td

In
s(

3)
P

Із
ол

ю
ю

ча
 

ст
ру

кт
ур

а

Ф
ор

м
ув

ан
ня

 ф
аг

оф
ор

у

Ф
аг

оф
ор

Е
Р

L
C

3 

Е
Р

Е
Р

Е
Р

А
па

ра
т 

Го
ль

дж
і

А
па

ра
т 

Го
ль

дж
і

P
I3

K
C

3 

Ри
с.

 5
. Ф

ор
м

ув
ан

ня
 ф

аг
оф

ор
у



30 |	 РОЗДІЛ 1. ІНІЦІАЦІЯ КСЕНОФАГІЇ ПРИ ГОСТРИХ РЕСПІРАТОРНИХ ІНФЕКЦІЙ

Вважають, що везикули, які містять ATG9, після актива-
ції аутофагії переміщуються від TGN в ЕР до місця утворення 
фагофору і служать платформою для зародження початкової 
мембрани ізолюючої структури [41].

1.2.2. Вплив інфекційних агентів на ініціацію ксенофагії

1.2.2.1. Вплив бактеріальних та вірусних патогенів на 
активність комплексу ULK1/2
Бактеріальні та вірусні патогени, що викликають гострі ре-

спіраторні інфекції (ГРІ), мають прямий та опосередкований 
вплив на механізми аутофагії та ксенофагії. Прямий вплив на 
ксенофагію патогени надають, переважно модулюючи активність 
внутрішньоклітинного PI3K/AKT/mTORC1‑сигнального шляху, 
а опосередкований вплив здійснюють, збуджуючи рецептори 
розпізнавання образів (pattern recognition receptors – PRR) клітин 
респіраторного тракту та імунної системи [58].

1.2.2.1.1. Безпосередній вплив бактеріальних 
та вірусних патогенів на активність PI3K/AKT/
mTORC1‑сигнального шляху
Більшість бактеріальних та вірусних респіраторних патогенів 

мають здатність модулювати активність внутрішньоклітинно-
го PI3K/AKT/mTORC1‑сигнального шляху, що істотно впли-
ває на ефективність ксенофагії та аутофагії клітин макроор-
ганізмів. Так, пороутворювальний токсин бактерій Streptococcus 
pneumoniae пневмолізин (pneumolysin – PLY) індукує ауто- та 
ксенофагічну відповідь у нефагоцитарних клітинах макроорганіз-
му. Продемонстровано, що PLY бактерії Streptococcus pneumoniae 
впливають на механізми аутофагії, безпосередньо інгібуючи PI3K/
AKT/mTORC1‑сигнальний шлях [59; 60]. Вірус грипу А (influenza 
A virus – IAV) також може індукувати механізми аутофагії [61]. 
Зокрема, вірусний матричний білок 2 (matrix protein 2 – M2) та 
нуклеопротеїн (nucleoprotein – NP) IAV посилюють аутофагію, 
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інгібуючи AKT/mTORC1‑сигнальний шлях, що забезпечує спри-
ятливі умови для реплікації вірусів [62]. Водночас у резидентних 
макрофагах легень під час грипозної інфекції спостерігається 
пролонгована активація mTORC1. Терапія інгібітором mTORC – 
рапаміцином – викликає регрес запального процесу у тканині 
легень, який характеризувався зниженням представництва 
макрофагів, Т-клітин та В-клітин в інфільтраті. Вважають, що 
активація mTORC1 підтримує активність запалення навіть після 
елімінації вірусного патогену [63]. Неструктурований протеїн 
NS1 вірусу IAV зв’язується з регуляторною p85β субодиницею 
PI3K, що призводить до фосфорилювання фактору BECN1 і, як 
наслідок, до активації ксенофагії [64].

Віруси, такі як SARS-CoV‑2 та респіраторно-синцитіальний 
вірус (respiratory syncytial virus – RSV), інфікуючи клітини ма-
кроорганізму, модулюють активність mTORC1‑асоційованого 
сигнального шляху [65].

Показано, що спайковий білок псевдовіріонів SARS-CoV‑2 
інгібує активність mTORC1‑асоційованого сигнального шляху 
в епітеліальних клітинах бронхів людини, підвищуючи внутріш-
ньоклітинні рівні активних кисневмісних метаболітів (АКМ) і зни-
жуючи рівень активності гліколізу та тим самим сприяє ініціації 
аутофагії та ксенофагії [20; 66]. Розвиток ГРІ, викликаної RSV, 
також супроводжується зниженням експресії в епітеліальних 
клітинах генів, що кодують протеїни mTORC1‑асоційованого сиг-
нального шляху (AKT1, mTOR та TSC1). Sarjana Shuchi та співавт. 
[67] вважають, що пригнічення mTORC1 сприяє ухиленню RSV 
від механізмів елімінації імунної системи. Активація аутофагії 
призводить до елімінації прозапальних факторів транскрипції 
та цитокінів. Цікавим є той факт, що у хворих, які отримують 
терапію інгібітором mTORC1, відзначається суттєво вищий 
рівень генерації як вірусних білків, так і нових віріонів під час 
RSV-інфекції. Інгібування кінази mTORC1 рапаміцином посилює 
аутофагію, але при цьому призводить до підвищення рівня ре-
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плікації геному RSV в епітеліальних клітинах 245 (human epithelial 
245 – HEp‑245) людини [65]. Водночас продемонстровано, що 
у дітей, інфікованих RSV, спостерігається вища експресія гена 
mTORC1 у змивах з носа, порівняно з дітьми, інфікованими 
метапневмовірусом та риновірусом, а RSV індукує фосфорилю-
вання серинового залишку (Ser2448) протеїну mTORC1 у CD8+T-
клітинах. Вірус-опосередковане підвищення активності mTORC1 
викликає пригнічення експресії фактору транскрипції FoxP3, 
що супроводжується придушенням диференціювання наївних 
T-клітин у регулюючі Treg-клітини, сприяючи активності запаль-
ного процесу [15].

1.2.2.1.2. Опосередкований вплив бактеріальних 
та вірусних патогенів на активність аутофагії та 
ксенофагії
Активація ксенофагії високо асоційована з патоген-

асоційованим збудженням PRR, таких як: toll-подібні рецеп-
тори (toll-like receptor-TLR), NOD-подібні рецептори (NOD-like 
receptors – NLRs), скавенджер-рецептори, рецептори пептидо-
гліканів (peptidoglycan receptors – PGRP), які беруть участь у ре-
когніції патоген-асоційованих молекулярних патернів (pathogen-
associated molecular pattern – PAMP) мікроорганізмів [58; 68].

1.2.2.1.2.1. TLR-опосередкована модуляція активності 
аутофагії
Ключовими представниками PRR вродженої імунної системи 

є рецептори сімейства TLR, які розпізнають екстрацелюлярно 
та ендосомально розташовані PAMP бактеріальних та вірусних 
інфекційних агентів. Продемонстровано, що активація TLR1, 
TLR2, TLR3, TLR4, TLR5 та TLR7 індукує утворення аутофагосом, 
а TLR-опосередкована аутофагія супроводжується посиленням 
продукування антимікробних пептидів. Порушення TLR фаго-
цитарних клітин посилює активність фагоцитозу, пов’язаного 
з MAP1LC3/LC3 (LC3‑associated phagocytosis – LAP), шляхом 
збудження селезінкової тирозинкінази (spleen tyrosine kinase – 
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Syk), протеїнкінази C (protein kinase C – PKC) та білка Rubicon. 
Механізм LAP бере участь в елімінації різних патогенів, вклю-
чаючи бактерії, віруси та гриби [69; 70].

Активація неканонічного типу аутофагії LAP стабілізує 
НАДФН-оксидазу 2 (NADPH oxidase 2 – NOX2), що та призво-
дить до стійкої генерації АКМ та підвищення рівня внутрішньо-
вакуолярного pH. Своєю чергою підвищення рівня pH індукує на 
мембрані везикули складання АТФази, яка пов’язує ATG16L1 для 
рекрутингу основного комплексу кон’югації MAP1LC3/LC3 з мем-
браною фагофору – ATG5-ATG12-ATG16L1. Також підвищення 
концентрації АКМ призводить до ліпідизації протеїну MAP1LC3/
LC3 та його кон’югації з одномембранною фагосомою, що зу-
мовлює формування везикули, декорованого легкого ланцюга 
3 протеїну MAP1LC3/LC3, який називається LAPoсомою. Злиття 
LAPoсоми з лізосомами формує фаголізосому, яка ефективно 
деградує поглинені патогени та продукти їхньої життєдіяльності. 
На відміну від канонічної аутофагії, яка орієнтована на деграда-
цію внутрішньоклітинних ксенобіотиків, механізм LAP елімінує 
позаклітинні утворення. Також комплекс V-АТФаза-ATG16L1 
активується в нефагоцитарних клітинах і зумовлює кон’югацію 
MAP1LC3/LC3 з везикулами, що містять патогени, які були за-
хоплені в позаклітинному просторі [71–75].

1.2.2.1.2.2. NLR-опосередкована модуляція активності 
аутофагії
Рецептори сімейства NLR (NOD1 і NOD2) після активації 

бактеріальними пептидогліканами (peptidoglycan – PGN), які є 
PAMP грам-позитивних бактерій, індукують ксенофагію. Зокрема, 
показано, що мурамілдипептид (muramyldipeptide – MDP), який є 
дериватом PGN, взаємодіючи з NOD2, індукує аутофагію в люд-
ських епітеліальних та дендритних клітинах [76; 77]. Однак па-
тогенні бактерії можуть індукувати біогенез олігомерів рецептор 
взаємодіючої серин-треонінової кінази 2 (receptor interacting 
serine/threonine kinase 2 – RIPK2), які формують RIPосоми, 
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чия дія посилює NF-kB-залежну запальну реакцію. Активація 
SQSTM1‑залежних механізмів селективної макроаутофагії руйнує 
RIPосоми, рестриктуючи запальну відповідь [78; 79].

Деякі фактори вірулентності інфекційних агентів розпізна-
ються галектином‑8, який являє собою цитоплазматичний β-га-
лактозид-зв’язувальний лектин, що призводить до інактивації 
mTORC1, та а отже формування фагофорів [80].

1.2.2.2. Вплив бактеріальних та вірусних патогенів на 
мембранну нуклеацію
Розвиток гострих респіраторних інфекцій, спричинених дея-

кими патогенними бактеріями або вірусами, регулює активність 
аутофагії та ксенофагії, надаючи прямий чи опосередкований 
вплив на комплекс PI3KC3.

Продемонстровано, що такий фактор вірулентності 
Streptococcus pneumoniae, як холінзв’язувальний протеїн C 
(choline-binding proteins – CbpC), експонований на поверхні 
пневмококових бактерій, зв’язується виключно з ATG14 і посилює 
генерацію PtdIns(3) P, індукуючи зародження фагофору [81].

Згідно з результатами досліджень після інфікування клітин 
майже будь-яким вірусом активується кіназа PI3KC3. Вірус-
індукована PI3KC3 сприяє не тільки формуванню фагофору, а та-
кож і вірусних везикул з подвійною мембраною (double membrane 
vesicles – DMV). Ця реплікаційна органела, що пов’язана з мем-
браною ЕР, забезпечує ефективну реплікацію РНК вірусів [4]. 
Зниження активності комплексу PI3KC3 значно знижує активність 
аутофагії та реплікації вірусного геному [82].

У процесі внутрішньоклітинної життєдіяльності SARS-CoV‑2 
використовують чинники макроорганізму, які беруть участь у фор-
муванні аутофагосом, і насамперед комплекс PI3KC3. Висока 
експресія вірусних протеїнів NSP3 та NSP4, які беруть участь 
у формуванні вірусних DMV, через конкуренцію за PtdIns(3) P 
може призвести до пригничення формування фагофору [82; 83].
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Водночас коронавірус, що викликає близькосхідний респіра-
торний синдром (Middle East respiratory syndrome – MERS), спри-
яє деградації BECN1, попереджаючи мембранну нуклеацію [84].
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РОЗДІЛ 2.  
ЕЛОНГАЦІЯ ФАГОФОРУ ПРИ ГОСТРИХ 
РЕСПІРАТОРНИХ ІНФЕКЦІЯХ

К
сенофагія відіграє ключову роль у ранньому захи-
сті макроорганізму від патогенних респіраторних 
бактеріальних та вірусних агентів [1–3]. Однією 

з основних стадій ксенофагії є елонгація фагофору, яка характе-
ризується збільшенням його мембрани, що призводить спочатку 
до формування чашоподібної мембранної структури, а надалі 
до сферичного двомембранного утворення – аутофагосоми. 
Утворення аутофагосоми зумовлює остаточну секвестрацію 
ксенобіологічних молекул, а потім і їхню елімінацію шляхом де-
градації лізосомальними ферментами [4]. Продемонстровано, 
що порушення елонгації фагофорів асоційовані з ризиком роз-
витку різних захворювань, тяжких клінічних проявів, у тому числі 
з ризиком виникнення несприятливого перебігу гострих респі-
раторних інфекцій (ГРІ) [5–10].

2.1. Елонгація фагофору

Субстрати ксенофагії, будучи продуктами патогенних бак-
терій і вірусів, опосередковують елонгацію фагофору, що, зреш-
тою, призводить до їх секвестрації в аутофагосомі. Елонгація 
фагофору є досить швидким біологічним процесом, який через 
декілька хвилин після ініціації ксенофагії завершується утво-
ренням аутофагосоми. Для забезпечення елонгації фагофору 
у процесі еволюції сформувалися кілька високоефективних мо-
лекулярних механізмів, які забезпечують ліпідами і протеїнами 
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мембрани фагофору, що зародився або росте. Після завершення 
елонгації фагофору відбувається остаточне інкапсулювання сто-
роннього біологічного матеріалу. Під час селективної аутофагії 
підготовка до секвестрації субстратів ксенофагії починається 
з убіквітинування субстратів і посилення експресії селективних 
аутофагічних рецепторів (selective autophagy receptor – SAR), 
які специфічно взаємодіють один з одним. Надалі комплекс 
убіквітинульованого субстрату та SAR фіксується на мембрані 
фагофору, зумовлюючи внутрішньоаутофагосомну локацію 
патогенів та продуктів їхньої життєдіяльності [11; 12].

2.1.1. Доставка ліпідів у мембрану ізолюючої структури

Згідно з результатами дослідження Thomas J. Melia та співавт. 
[13], для формування однієї аутофагосоми діаметром приблиз-
но 400 нм потрібно до 3 000 000 ліпідних молекул. Швидкість 
надходження фосфоліпідів у мембрану фагофору становить 
приблизно 4 000 молекул в секунду [14]. Забезпечення фагофору 
ліпідами здійснюється за допомогою: 1) прямої екструзії ліпідів 
у мембрану фагофору з існуючих органел; 2) механізмів доставки 
ліпідів за допомогою везикул або трансмембранних протеїнових 
каналів; 3) синтезу ліпідів на місці комплексом PI3KC3 [13].

Ліпіди, які будуть використані для елонгації фагофору, мо-
жуть бути «видавлені» з мембран ЕР та мітохондрій у мембрану 
фагофору. Оскільки ЕР є ключовою ліпід-синтезуючою органелою 
клітини, він є основним джерелом ліпідів, які використовуються 
для елонгації фагофору [15].

У везикуло-опосередкованому перенесенні ліпідів на фа-
гофори беруть участь: 1) везикули, що містять як ATG9, так 
і ATG16L1, утворені з ендосом, що рециркулюють; 2) везикули, 
облямовані комплексом II оболонкового протеїну (coat protein 
complex II–COPII), які походять з ERGICI та беруть участь у ліпі-
дизації протеїнів MAP1LC3/LC3. Мембрани більшості везикул, 
зливаючись із фагофором, сприяють його елонгації. Водночас 
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у ссавців везикули, що містять ATG9, не зливаються і не коалес-
ценують з мембраною фагофору, а лише опосередковують транс-
порт ліпідів та фосфатидилінозитол‑4‑кінази класу III PI4KIIIβ 
до мембрани ЕР та фагофору. Везикулярна скрамблаза ATG9 
утворює комплекс з ліпідним каналом ATG2, сприяючи транс-
портуванню фосфоліпідів у мембрану фагофору [16]. Везикули 
COPII відіграють важливу роль у транспорті ліпідів та білків та 
з мембран ЕР у фагофори [17].

Молекули, які безпосередньо транспортують ліпіди до фа-
гофору, представлені білком ATG2A; протеїном 1A, що містить 
домен GRAM (GRAM domain containing 1A – GRAMD1A); гомо-
логом А протеїну 13 сімейства вакуолярного сортування білків 
(vacuolar protein sorting 13 homolog A – VPS13A) і протеїном 
трансферу ліпідів (lipid transfer protein – TipC) [13; 18; 19].

Першим ідентифікованим представником групи протеїнів, що 
беруть участь у прямому перенесенні фосфоліпідів у фагофор, 
є білок ATG2A, який є ліпідним каналом, що зв’язує фагофори, 
які зростають, з мембранними джерелами ліпідів, такими як ЕР. 
Вважають, що ATG2‑асоційована транспортна система відіграє 
ключову роль в елонгації фагофору та в закритті пори аутофа-
госоми. Відповідно до результатів кріогенної електронної мікро-
скопії вздовж усієї довжини протеїну ATG2A проходить тунель, 
через який переміщуються молекули фосфоліпідів у мембрану 
фагофору [20]. Протеїн ATG2 рекрутується на фагофор за допо-
могою ATG9 та WIPI4. Молекула ATG9, розташована на мембрані 
фагофору, прикріплюється до C-кінця протеїну ATG2. У той час, 
білки VMP1 та TMEM41B, асоційовані з мембраною ЕР, фіксують 
N-термінальний регіон протеїну ATG2 [21–24]. Протеїн WIPI4 
опосередковує зв’язування C-термінального регіону ATG2 про-
теїну з молекулою PI мембрани фагофору. Ліпіди після стійкої 
фіксації ATG2‑ліпідкого каналу між везикулою, що містить ATG9, 
і фагофором; між ділянкою мембрани ЕР, що містить протеїн 
VMP1 і/або TMEM41B, і фагофором; – транслокуються з везикул 
і ЕР мембрани фагофору (рис. 6) [25–27].
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Рис. 6. Роль комплексу ATG9-ATG2 у формуванні фагофору
Примітка: модель комплексу ATG2-WIPI4 адаптована у Yang Wang та співавт. [133].

Продемонстровано, що транспортний протеїн GRAMD1A є необхідним 

компонентом у ранніх стадіях біогенезу аутофагосом, він безпосередньо бере 
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Рис. 6. Роль комплексу ATG9-ATG2 у формуванні фагофору
Примітка: модель комплексу ATG2-WIPI4 адаптована у Yang Wang та 
співавт. [133].
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Продемонстровано, що транспортний протеїн GRAMD1A 
є необхідним компонентом у ранніх стадіях біогенезу аутофа-
госом, він безпосередньо бере участь в ініціації біогенезу ауто-
фагосом за допомогою перенесення холестерину у фагофори 
та аутофагосоми. Протеїн GRAMD1A містить домен GRAM 
і домен StAR T. Домен GRAM фіксує молекулу GRAMD1A, зв’я-
зуючись з фосфатидилінозитол‑3‑фосфатом (phosphatidylinositol 
3‑phosphate – PtdIns(3) P) мембрани ЕР, а домен StART захоплює 
холестерин. Показано, що протеїн GRAMD1A релокується до 
місця утворення фагофору PtdIns(3) P-залежним чином. Димер 
протеїну GRAMD1A специфічно зв’язується доменами GRAM 
з мембранної ізолюючої структури або фагофору, що зростає, 
у місцях ініціації аутофагії та переносить холестерин з мембрани 
ЕР в ізолюючу структуру або фагофор [28; 29].

Інгібування функціональної активності GRAMD1A, як і про-
теїну ATG2, призводить до припинення формування та елонгації 
фагофорів [30].

2.1.2. Рекрутинг аутофагічних протеїнів та їх кон’югація 
з мембраною фагофору

До місця зароджувального фагофору в періоді ініціації ауто-
фагії рекрутуються WIPI2B, протеїнкіназа ULK1/2 та її партнери 
ATG13, FIP200, ATG101, які утворюють комплекс, що приваблює 
протеїни ATG9 та PI3KC3 (ATG14, BE4). Надалі в мембрану фа-
гофору рекрутуються убіквітин-подібні білки сімейства ATG8 та 
її кон’югаційні системи, основною функцією яких є кон’югація 
протеїнів сімейства ATG8 з PE мембрани фагофору [31].

Активовані комплекси ULK1/2, PI3KC3 рекрутують білки, які 
беруть участь в елонгації фагофору та формуванні аутофагосом, 
включаючи убіквітин-подібні системи кон’югації, що формують 
комплекси ATG12-ATG5-ATG16L1 та ATG8-PE. Також комплекс 
ATG12-ATG5-ATG16L1 рекрутується протеїном WIPI2B, який 
регулює ліпідизацію протеїнів ATG8 [32].
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Сімейство протеїнів ATG8 включає легкі ланцюги 3‑β про-
теїну 1, асоційованого з мікротрубочками (microtubule-associated 
protein 1 light chain 3‑β/light chain 3 – MAP1LC3/LC3), і протеїни, 
асоційовані з рецептором

γ-аміномасляної кислоти (ГАМК) А типу (GABA type A receptor-
associated protein – GABARAP). Протеїни MAP1LC3/LC3 представ-
лені ізоформами A, B та C, а білки GABARAPL – також трьома 
лізоформами: 1, 2, 3. Попередники протеїнів ATG8 піддаються 
процесингу на C-кінцевому гліциновому залишку протеазою 
ATG4, і зрілі форми протеїнів ATG8 кон’югуються з PE мембрани 
фагофору за допомогою систем кон’югації, таких як комплекси 
ATG3-ATG7 та ATG12-ATG5-ATG16L [33–35].

Складання комплексу кон’югації з ATG5, ATG12 та позитив-
ного регулятора ATG16L1 ініціюється взаємодією E1‑подібного 
ферменту ATG7В з ATG12, що зумовлює утворення тіоефір-
ного зв’язку між цистеїновим залишком ATG7В та гліциновим 
залишком гліциновим залишком C-термінального регіону мо-
лекули ATG12. Надалі активований ATG12 переноситься на 
цистеїновий залишок молекули E2‑подібного ферменту ATG10, 
а потім C-термінальний регіон молекули ATG12 зв’язується че-
рез ізопептидний зв’язок з лізиновим залишком молекули ATG5, 
формуючи комплекс ATG12-ATG5. Два кон’югати ATG12-ATG5, 
взаємодіючи з димером ATG16L1, утворюють гетерогексамерний 
комплекс ATG12-ATG5-ATG16L1, який діє як E3‑лігаза, забезпе-
чуючи зв’язування убіквітин-подібних протеїнів сімейства ATG8 
(друга система кон’югації) з молекулою фосфатидилетаноламіну 
мембрани фагофору (рис. 7). Фіксація комплексу ATG12-ATG5-
ATG16L1 на мембрані фагофору забезпечується організацією 
зв’язку ATG12 з комплексом кінази ULK1 та ATG16L1 – з про-
теїном WIPI2B, який взаємодіє з PtIns3P мембрани фагофору. 
Експериментальні тварини з нокаутом генів Atg5, Atg12 або 
Atg16l1 гинуть у першу добу після народження [36–38].
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Рис. 7. Кон'югація MAP1LC3/LC3 з фосфатидилетаноламіном пре-

аутофагосомної структури

Кінцеві продукти кон'югації протеїнів сімейства ATG8 – ліпідовані 
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Рис. 7. Кон’югація MAP1LC3/LC3 з фосфатидилетаноламіном 
пре-аутофагосомної структури

Кінцеві продукти кон’югації протеїнів сімейства ATG8 – ліпі-
довані (PE-кон’юговані) MAP1LC3/LC3 (MAP1LC3/LC3-PE) та 
GABARAP (GABARAP–PE) – вважаються ключовими марке-
рами клітинної аутофагії. Моніторинг агрегації та дезагрегації 
комплексу ATG5-ATG12-ATG16L1 може бути використаний як 
засіб для вивчення динаміки аутофагії [36; 38].

Ліпідовані білки MAP1LC3/LC3 та GABARAP розташовують-
ся як на внутрішній, так і зовнішній мембрані фагофору. Вони 
функціонують як адаптерні або каркасні структури, які рекрутують 
на фагофор протеїни, що містять регіон, що взаємодіє з LC3 
(LC3 interacting region – LIR). Регіон LIR є коротким лінійним 
мотивом (short linear motifs – SLiM), який забезпечує зв’язування 
SAR з протеїнами сімейства ATG8, асоційованими з мембраною 
аутофагосоми [39]. На думку Malte Karow та співавт. [37], кон’ю-
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гати MAP1LC3/LC3-PE і GABARAP-PE беруть участь не тільки 
у зв’язуванні протеїнів сімейства ATG8 з SAR, а також: 1) у фік-
сації на мембрані фагофору LIR-компонентів комплексів ініціації 
аутофагії; 2) мембранної нуклеації; 3) кон’югації ATG12–ATG5; 
4) регуляції активності ферментоподібної цистеїнової протеази 
ATG4B, яка декон’югує ATG8-PE, зумовлюючи відщеплення про-
теїнів сімейства ATG8 від мембрани фагофору. Також MAP1LC3/
LC3-PE і GABARAP-PE беруть участь в елонгації фагофору та 
злитті аутофагосом з лізосомами. Хоча спосіб участі протеїнів 
ATG8 (MAP1LC3/LC3 та GABARAP) у процесі елонгації фаго-
фору та у формуванні аутофагосоми залишається невідомим. 
Вважають, що їхня кон’югація сприяє як залученню ліпідів з ЕР 
в мембрану фагофору, так і локальному синтезу жирних кислот 
[40].

2.2. Секвестрація субстратів ксенофагії

2.2.1. Убіквітинування субстратів ксенофагії

2.2.1.1. Механізми убіквітинування субстратів 
ксенофагії
Під час ксенофагічної реакції, на відміну від канонічної 

макроаутофагії, поглинені клітиною патогени та їх деривати 
маркуються однією або декількома молекулами убіквітину. Ця 
кон’югація убіквітину з лізиновим залишком інших білків є по-
сттрансляційною модифікацією протеїнів, яка отримала назву 
«убіквітинування». В результаті убіквітинування з протеїновим 
субстратом може бути кон’югований як мономер, так і різної 
довжини полімери убіквітину. Вперше убіквітинування відкрито 
в 1984 році як процес, який забезпечує транспортування білків 
до 26S-протеасоми, яка деградує їх [41–43].

Убіквітинування ксенобіотичних протеїнових субстратів 
здійснюється каскадом трьох ферментів, який складається з фер-
менту, що активує убіквітин (E1), ферменту, що кон’югує убіквітин 
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(E2), і убіквітинлігази (E3). Видалення убіквітину з субстрату 
каталізується класом деубіквітинуючих ферментів. Ферменти 
E1 здійснюють АТФ-залежну активацію молекули убіквітину за 
допомогою конформаційної модифікації її С-термінального ре-
гіону з подальшим перенесенням убіквітину на E2‑фермент. За 
допомогою E3‑ферменту E2‑ферменти з активованим убіквіти-
ном кон’югуються з субстратним протеїном, що призводить 
до перенесення убіквітину з молекули E2‑ферменту на суб-
страт. У людини ідентифіковано два представники сімейства 
E1‑ферментів, приблизно 40 представників E2‑ферментів і по-
над 600 представників E3‑ферментів. Процес убіквітинування 
характеризується високим ступенем субстрат-специфічності, 
яка опосередкована E3‑лігазами. Сукупність E3‑лігаз складаєть-
ся з чотирьох типів ферментів: типу HECT (homologous to the 
E6AP carboxyl terminus), типу U-box, типу RING-finger (really 
interesting new gene), типу RBR (RING-between-RING) гібрид-
них лігаз [43–45]. До групи ферментів людини, які селективно 
убіквітинулюють протеїни внутрішньоклітинних патогенів, нале-
жать тільки декілька E3 убіквітин-протеїнлігаз, такі як: RBR E3 
убіквітин-протеїнлігаза PARKIN (PARKIN RBR E3 ubiquitin protein 
ligase – PRKN); SMAD-специфічна E3 убіквітин-протеїнлігаза 
1 (SMAD specific E3 ubiquitin protein ligase 1 – SMURF1); білок 
31 містить домен RING пальця (ring finger protein 31 – RNF31); 
гомолог протеїну ariadne‑1 сімейства домену RBR (ariadne RBR 
E3 ubiquitin protein ligase 1 – ARIH); комплекс складання ліній-
ного убіквітину (linear ubiquitin assembly complex – LUBAC); 
протеїн 1, багатий на лейцинові повтори і містить стерильний 
альфа-мотив (leucine rich repeat and sterile alpha motif containing 
1 – LRSAM1); протеїн 8, що містить асоційований з мембраною 
домен RING пальця типу CH (membrane associated ring-CH-type 
finger 8 – MARCH8); фактор 6, асоційований з рецептором фак-
тору некрозу пухлин (TNF receptor associated factor 6 – TRAF6). 
З цих E3 убіквітин протеїнлігаз MARCH8 найчастіше бере участь 
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в убіквітинуванні вірусних білків, призначених для ксенофагічної 
деградації [12; 46].

Рівень убіквітинування субстратів залежить від балансу 
активності системи убіквітинування і деубіквітинування, яке 
здійснюють деубіквітинуючі ферменти (deubiquitinating enzymes – 
DUB). Численні інфекційні агенти продукують DUB або DUB-
подібні молекули, які перешкоджають процесу убіквітинування 
і інгібують механізми ксенофагії [47; 48].

Убіквітин має здатність утворювати ланцюги, використо-
вуючи лізинові залишки (K) та метіоніновий залишок 1 (M1). 
Встановлено, що молекула убіквітину містить у своїй 76 аміно-
кислотній послідовності сім K залишків, які розташовані на по-
зиціях 6, 11, 27, 29, 33, 48, 63, і один M залишок, розташований 
у N-термінальному регіоні протеїну. Різні E3‑лігази формують 
зв’язки з різними залишками убіквітину і генерують різні типи 
убіквітинових ланцюгів. Різноманітність довжини та комбінацій 
розгалуження поліубіквітинового ланцюга об’єктивно зумовлюють 
формування широкого спектра «убіквітинових кодів». Зокрема, 
E3‑лігаза LRSAM1 генерує ланцюги K6 і K27, а E3‑лігази ARIH 
і HOIP1 формують ланцюг K48 і ланцюг M1 відповідно [41].

Ефекти убіквітинування залежать від використаних сайтів 
молекули убіквітину. Так, формування убіквітинових ланцюгів 
за рахунок K63‑зв’язків обумовлює елімінацію субстрату за до-
помогою аутофагії, а формування убіквітинових ланцюгів за 
рахунок K48- або K27‑зв’язків зумовлює протеасомну деградацію 
субстрату; тоді як використання M1‑зв’язків сприяє: 1) активації 
NF-κB-асоційованих сигнальних шляхів і, як наслідок, розвитку 
запального процесу; 2) інгібуванню сигнальних шляхів, пов’я-
заних з IFN I типу, запобігаючи розвитку противірусної відповіді 
(рис. 8) [49–52].
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Рис. 8. Різні типи зв'язків молекули убіквітину з таргетними 
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Рис. 8. Різні типи зв’язків молекули убіквітину з таргетними 
протеїнами та їх біологічні ефекти [11]

2.2.1.2. Вплив респіраторних інфекційних агентів на 
механізми убіквітинування протеїнів
Продемонстровано, що в процесі ксенофагії бактерій 

Mycobacterium tuberculosis беруть участь дві E3‑лігази: PRKN 
і SMURF1, які кон’югують убіквітинові ланцюги з молекулами 
факторів вірулентності бактерій. Лігаза PRKN убіквітинулює 
протеїн спеціалізованої системи секреції ESX‑1 типу VII бактерій 
Mycobacterium tuberculosis, використовує K63 залишок убіквітину, 
а SMURF1 – K48 залишок убіквітину. Убіквітинові ланцюги, кон’ю-
говані E3‑лігазами з PRKN та SMURF1, надалі розпізнаються 
селективними аутофагічними рецепторами CALCOCO2/NDP52, 
SQSTM1/p62 [53].

Розвиток грипозної інфекції супроводжується посиленням 
експресії E3‑лігази MARCH8, яка бере участь в убіквітинуванні 
вірусних глікопротеїнів, готуючи їх для подальшої аутофаголізосо-
мної деградації. Згідно з результатами конфокальної мікроскопії, 
аутофагічний рецептор MARCH8 захоплює вірусні глікопротеїни 
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у внутрішньоклітинному компартменті клітини. Вважають, що при 
здійсненні убіквітинування цитоплазматичних хвостів таргетних 
протеїнів E3‑лігаза MARCH8 використовує свій домен RING-CH. 
Основним індуктором експресії гена MARCH8 є IFN I типу [54]. 
Результати експериментальних досліджень свідчать, що MARCH8 
інгібує експресію глікопротеїнів оболонки різних вірусів, у тому 
числі аренавірусів, сарбековірусів (SARS-CoV‑2), рабдовірусів, 
ретровірусів (ВІЛ‑1), тогавірусів (альфавірусів) [55].

Показано, що E3‑лігаза MARCH8 суттєво інгібує пізню стадію 
реплікації геному та активність вивільнення IAV із клітин експе-
риментальних інфікованих тварин [56]. Також E3‑лігаза MARCH8, 
каталізуючи поліубіквітинування вірусного матриксного протеїну 
M2, формуючи зв’язки з K63 і K78 залишками убіквітину, пригнічує 
вивільнення віріонів з клітин макроорганізму і сприяє ксенофа-
гії IAV [57]. Субстрати, убіквітинульовані E3‑лігазою MARCH8, 
розпізнаються рецептором CALCOCO2/NDP52. Високий рівень 
експресії гена та каталітичної активності протеїну MARCH8 су-
проводжується зниженням ступеня вірулентності нових віріонів 
штамів H3N2 та H1N1 IAV. Також мембранно-асоційована 
E3‑лігаза MARCH8, порушуючи зв’язування глікопротеїнів оболон-
ки вірусів з рецепторними білками, розташованими на поверхні 
клітин макроорганізму, пригнічує включення останніх у процес 
формування нових віріонів [56; 58; 59].

У клітинах макроорганізму після інфікування вірусами SARS-
CoV‑2 спостерігається інгібування таких E3‑лігаз, як PRKN, 
MARCH8.

Молекула E3‑лігази PRKN сімейства RING-between-RING 
в C-термінальному регіоні містить домен RBR, який має каталітич-
ний цистеїновий залишок, здатний кон’югувати E2‑ферменти 
з таргетними протеїнами [60; 61]. Встановлено, що основна 
вірусна протеаза (main protease – Mpro, яка також відома як 
3‑хімотрипсин-подібна протеаза (3‑chymotrypsin-like protease – 
3CLpro), або протеїн Nsp5) коронавірусу SARS-CoV‑2 піддається 
убіквітинуванню E3‑лігазою PRKN. Встановлено, що розвиток 
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SARS-CoV‑2‑асоційованого інфекційного процесу супровод-
жується інгібуванням експресії гена PRKN у тканинах легких 
хворих мишей. Водночас високий рівень активності PRKN су-
проводжується ефективним убіквітинування протеїну Nsp5 і ксе-
нофагічною елімінацією вірусу, а недостатність функціональної 
активності PRKN призводить до зниження активності убіквіти-
нування протеїну Nsp5, що сприяє реплікації геному вірусу [62].

У процесі убіквітинування білка N вірусу SARS-CoV‑2 бере 
участь E3‑лігаза MARCH8. Мутація гена March8 позбавляє клітину 
здібності ефективно деградувати протеїн N вірусу SARS-CoV‑2 [63].

2.2.2. Селективні аутофагічні рецептори

2.2.2.1. Характеристика селективних аутофагічних 
рецепторів
Селективна форма відрізняється від неселективної форми 

аутофагії здатністю елімінувати певні молекулярні структури або 
органели клітини, використовуючи SAR, які взаємодіють із таргет-
ними мішенями. Розрізняють два типи SAR: убіквітин-зв’язувальні 
рецептори, які розпізнають убіквітинінові ланцюги, пов’язані 
з аутофагічним вантажем, та рецептори аутофагічного вантажу, 
розташування якого асоційовано з певною внутрішньоклітинною 
локацією [64–66]. Різні типи селективної аутофагії використову-
ють конкретні SAR для рекогніції таргетних убіквітинульованих 
мішеней (табл. 2).

Таблиця 2
Типи аутофагії та селективні аутофагічні рецептори ссавців  

[33 з доповненнями]

Тип аутофагії Субстрат Селективні аутофагічні рецептори
Агрефагія Білковий агре-

гат
NBR1, OPTN, SQSTM1/p62

Глікофагія Глікоген Stbd1
ЕР-фагія ЕР ATL3, CCPG1, FAM134B, RTN3, SEC62, 

TEX264
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Тип аутофагії Субстрат Селективні аутофагічні рецептори
Зимофагія Секреторна 

гранула
SQSTM1/p62

Ксенофагія (бактері-
офагія)

Бактеріальні 
протеїни

CALCOCO2/NDP52, FBXO2, NBR1, SQSTM1/
p62, TAX1BP1

Ксенофагія (вірофа-
гія)

Вірусні проте-
їни

CALCOCO2/NDP52, OPTN, SQSTM1/p62, 
TRIM5α,

Лізофагія Лізосома CALCOCO2/NDP52, TRIM16
Пексофагія Пероксисома NBR1, SQSTM1/p62
Рибофагія Рибосоми NUFIP1
Убітквітин-залежна 
мітофагія

Мітохондрії AMBRA1, CALCOCO2/NDP52, OPTN, 
SQSTM1/p62, TAX1BP1

Убітквітин-незалежна 
мітофагія

Мітохондрії AMBRA1, Bcl2L13, BNIP3, FKBP8, FUNDC1, 
NIX, NLRX1, PHB2, кардіоліпін, керамід

Феритинофагія Феритин NCO4A

Інфекційні агенти після інвазії в клітину макроорганізму ін-
дукують експресію генів убіквітин-зв’язувальних SAR, які мають: 
здатність взаємодіяти, з одного боку, з убіквітинульованими спец-
ифічними ксенобіотичними субстратами, а з іншого боку, викори-
стовуючи мотив LIR, з молекулами MAP1LC3/LC3, що розташо-
вуються на поверхні внутрішньої мембрани фагофору [11; 67].

Убіквітинульовані продукти життєдіяльності вірусних та 
бактеріальних агентів зв’язуються такими SAR, як протеїн, що 
містить кальцій-зв’язувальний домен та спірально-спіральний 
домен 2 (calcium binding and coiled-coil domain 2-CALCOCO2/
NDP52); оптиневрин (optineurin – OPTN); протеїн 2, що містить 
F-box (F-box protein 2 – FBXO2); білок 1, пов’язаний з Tax1 (Tax1 
binding protein 1 – TAX1BP1); протеїн 5α, що містить трипарти-
турний мотив (tripartite motif containing 5α – TRIM5α); рецептор 
аутофагічного вантажу NBR1 або протеїн сусіднього гена BRCA1 
(NBR1 autophagy cargo receptor /neighbor of BRCA1 – NBR1); 
секвестосома 1 (sequestosome 1 – SQSTM1/p62). Комплекси 
цих рецепторів та їх убіквітинульованих субстратів зв’язуються 
з молекулою MAP1LC3/LC3, прикріпленою до мембрани фа-

Закінчення табл. 2
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гофору, індукуючи його трансформацію в аутофагосому [49; 
50; 66; 68]. Найбільш вивченими солютабними SAR у ссавців 
є рецептори, подібні до секвестосоми‑1 (sequestosome‑1‑like 
receptors – SLR), такі як: CALCOCO2/NDP52, NBR1, OPTN, 
SQSTM1/p62, TAX1BP1 [54].

2.2.2.2. Вплив інфекційних агентів на експресію генів 
аутофагічних рецепторів
Розвиток респіраторних інфекцій супроводжується зміною 

рівня експресії генів, що кодують протеїни SAR, які беруть участь 
у бактеріофагії (CALCOCO2/NDP52, FBXO2, OPTN, SQSTM1/
p62, TAX1BP1) або вірофагії (CALCOCO2/NDP52, SQSTM) 
(табл. 3) [33; 69].

Таблиця 3
Респіраторні інфекти та таргетні аутофагічні рецептори [69–71]

Інфект Таргетний протеїн інфекту Аутофагічний рецептор
Бактерії

Mycobacterium 
tuberculosis

– CALCOCO2/NDP52?

Streptococcus 
pneumoniae

Пнемолізин (PLY) CALCOCO2/NDP52; SQSTM1/
p62

Streptococcus 
pyogenes

Ацетилглюкозамін (GlcNAc)
?

FBXO2; CALCOCO2/NDP52; 
NBR1; SQSTM1/p62

Віруси
IAV Неструктурний допоміжний бі-

лок PB1-F2
CALCOCO2/NDP52

SARS-CoV‑2 Капсидний білок M, білок N
ORF3a
?

CALCOCO2/NDP52
SQSTM1/p62
TRIM5α

Риновірус ? SQSTM1/p62

Інфікування клітин макроорганізму бактеріями Streptococcus 
pneumoniae супроводжується індукцією генів рецепторів 
CALCOCO2/NDP52, SQSTM1/p62 та протеїнів системи убіквіти-
нування. Протеїн CALCOCO2/NDP52 є представником сімейства 
білків ядерних точок, який містить домен зв’язування убіквітину 
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та бере участь у процесі ксенофагії і регулює процес дозріван-
ня аутофагосоми, активність продукування цитокінів, а також 
клітинної адгезії шляхом зв’язування з міозином VI. Рецептор 
SQSTM1/p62 взаємодіє з убіквітинульованими субстратами 
патогенів через свій домен, асоційований з убіквітином (ubiquitin-
associated domain – UBA) [72].

Після зв’язування з убіквітинульованими ланцюгами, кон’ю-
гованими з ксенобіотичними молекулами, рецептори SQSTM1/p62 
мультимеризуються і транспортують убіквітинульований вантаж 
до мембрани фагофору, де вони зв’язуються з PE-кон’югованими 
протеїнами сімейства ATG8, фіксуючи ксенофагічний вантаж 
на мембрані фагофору. Крім того, протеїн SQSTM1/p62 бере 
участь у регуляції активності фактору транскрипції NF-κB та 
продукуванні IFN типу I [73].

Пневмококові бактерії на ранніх стадіях інфекційного проце-
су викликають формування незалежних від RB1CC1/FIP200 та 
SQSTM1‑позитивних фагосомоподібних вакуолей (phagosome-like 
vacuole – PcLV). З часом PcLV перетворюються на бактерицид-
ні аутофагічні вакуолі (bactericidal autophagic vacuole – PcAV). 
Продемонстровано, що активність формування PcLV досягає 
свого піка вже через одну годину, а PcAV – через дві години після 
інфікування бактеріями Streptococcus pneumoniae. Рецептор 
SQSTM1 SQSTM1/p62 має здатність зв’язуватися з протеїном 
ATG16L1 мембрани вакуолі. У пізні стадії інфекційного процесу 
на мембрани PcLV рекрутуються протеїни MAP1LC3/LC3, які 
сприяють індукції канонічної ксенофагії, що зумовлює деградацію 
пневмококів [74; 75]. Селективна аутофагія, що опосередкова-
на рецепторами CALCOCO2/NDP52, перешкоджає зростанню 
бактеріальних колоній. Нокаут гена Calcoco2/Ndp52 в експери-
ментальних тварин супроводжується посиленням зростання 
стрептококової колонії та пригніченням активності ксенофагії 
[76]. Цікавим є те, що на ранній стадії стрептококової інфекції 
пригнічується експресія генів SAR [77].
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Відомо, що бактерії Streptococcus групи A (Group 
A Streptococcus – GAS) відомі, як бактерії Streptococcus 
pyogenes, продукують пороутворювальний токсин – стрептолі-
зин O (streptolysin O – SLO), який сприяє вивільненню бактерій 
з ендосом у цитоплазми нефагоцитуючих клітин людини та 
активує експресію убіквітин-зв’язувального рецептора аутофа-
гії – FBXO2. Рецептор FBXO2 взаємодіє з убіквітинульованим 
бічним ланцюгом N-ацетилглюкозаміну (GlcNAc) поверхневого 
рамнозного полісахариду бактерій GAS та сприяє ефективності 
ксенофагії [78].

Убіквітинульований протеїн PB1-F2 вірусу IAV, взаємодіючи 
з рецептором CALCOCO2/NDP52, активує механізми ксенофагії. 
Зв’язування вірусного протеїну PB1-F2 з рецептором CALCOCO2/
NDP52 активує трансдуктор сигналу TRAF6, що призводить до 
посилення активності прозапального фактору транскрипції NF-
κB [79]. Відомо, що інгібування рецептора CALCOCO2/NDP52 
призводить до зниження елімінації віріонів та підвищення рівня 
реплікації вірусного геному [80].

Вірусні убіквітинульовані протеїни SARS-CoV‑2 взаємодіють 
із SAR, такими як: CALCOCO2/NDP52, SQSTM1/p62, TRIM5α.

Різні протеїни SARS-CoV‑2 диференційовано впливають на 
активність експресії рецепторів SQSTM1/p62. Зокрема, протеаза 
Nsp5 SARS-CoV‑2 знижує, а капсидний протеїн M і Orf3a SARS-
CoV‑2 підвищують рівні експресії гена SQSTM1/p62. Баланс 
між рівнем продукування протеїнів Nsp5 та M, Orf3a визначає 
рівень вірусного навантаження та активність запального син-
дрому у хворих на COVID‑19. Так, з активністю експресії Nsp5 
пов’язане зниження рівня мРНК TNF-α, а з Orf3a – підвищення 
концентрації мРНК TNF-α, IL‑1β, IL‑6, IL‑33 [62; 81].

Інфікування культури клітин людини вірусом SARS-CoV‑2 
супроводжується акумуляцією рецепторів SQSTM1/p62 та підви-
щенням представництва MAP1LC3B/LC3B. Рецептор SQSTM1/
p62 зв’язується з вірусним капсидним білком M і рекрутує SARS-
CoV‑2 аутофагосоми, що в кінцевому підсумку призводить до 
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лізосомальної деградації вірусу. Проте протеаза Nsp5 вірусу 
SARS-CoV‑2, яка має здатність розщеплювати протеїн SQSTM1/
p62 на два фрагменти, зумовлює уникнення вірусу від дегра-
дації аутофаголізосомними ферментами та неефективність 
процесу ксенофагії [81–83]. Продемонстровано, що у хворих на 
COVID‑19 на початку захворювання спостерігається зниження 
рівня концентрації аутофагічного рецептора SQSTM1/p62, яке 
прямо пропорційно асоційоване з рівнем прозапальних цитокінів 
TNF-α, IL‑8, IL‑17 та IL‑33. Нокаут гена Sqstm1/p62 супровод-
жується проявами імуносупресії, а гіперекспресія гена Sqstm1/
p62 – ознаками значного запалення [83]. Рецептор CALCOCO2/
NDP52 зв’язується з білком N вірусу SARS-CoV‑2, який убіквіти-
нулюється E3‑лігазою MARCH8 та сприяє деградації цього білка 
SARS-CoV‑2. Необхідно наголосити, що протеїн MARCH8, опосе-
редковуючи деградацію глікопротеїнів S та M вірусу SARS-CoV‑2, 
також пригнічує реплікацію вірусу CALCOCO2/NDP52. З огляду 
на те що білок N вірусу SARS-CoV‑2 сприяє реплікації вірусного 
геному, інгібуючи експресію білка 1 реакції раннього зростання 
(early growth response 1 – EGR1), який підтримує інтерферонову 
відповідь, вважають, що достатня експресія CALCOCO2/NDP52 
є необхідним компонентом саногенезу COVID‑19 [63].

Білки TRIM беруть участь у регуляції аутофагії, апоптозу 
та захисних реакціях проти вірусів та бактерій. Зокрема, білки 
TRIM індукують активацію кінази ULK1, що ініціює аутофагію, 
та регулятора аутофагії протеїну BECN1 [84]. Протеїн TRIM5α 
(RNF88α) ідентифіковано як противірусний фактор проти віру-
су імунодефіциту людини 1 (ВІЛ‑1). Взаємодія TRIM5α до ре-
тровірусного капсиду індукує убіквітинлігазу E3 і призводить до 
активації прозапальних NF-κB- і AP‑1‑асоційованих сигнальних 
шляхів [85; 86].

Продемонстровано, що у хворих із тяжким перебігом 
COVD‑19 спостерігається суттєве зниження експресії TRIM5α 
[87]. Мутації гена TRIM5α супроводжуються підвищенням ре-
плікації вірусів [88; 89].
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2.2.3. Взаємодія MAP1LC3/LC3 з комплексом 
убіквітинульованих продуктів інфекційних агентів  
та селективними аутофагічними рецепторами

Протеїн MAP1LC3/LC3, кон’югований з мембраною фагофо-
ру, зв’язується з SAR, які комплексовані з убіквітинульованими 
субстратами ксенофагії (рис. 9) [90].

Рис. 9. Взаємодія MAP1LC3/LC3 з комплексом убіквітинульованих

субстратів та селективними аутофагічними рецепторами

До молекулярних комплексів, які сформовані убіквітинульованими 

молекулами патогенів та SAR, долучається фагофор, кон'югований з 

протеїнами MAP1LC3/LC3. Зв'язування комплексу ксенобіотик-SAR з 

MAP1LC3/LC3 мембрани фагофору стимулює елонгацію фагофору, що в 

кінцевому підсумку призводить до інкапсулювання продуктів 

життєдіяльності патогенів та й самих патогенів в аутофагосоми, що сприяє 

дозріванню аутофагосом та деградації стороннього матеріалу [11].

Фагофор

MAP1LC3

SAR

Компонент 
інфекційного агента

Молекули 
убіквітину

Рис. 9. Взаємодія MAP1LC3/LC3 з комплексом убіквітинульова‑
них субстратів та селективними аутофагічними рецепторами

До молекулярних комплексів, які сформовані убіквітинульо-
ваними молекулами патогенів та SAR, долучається фагофор, 
кон’югований з протеїнами MAP1LC3/LC3. Зв’язування комплексу 
ксенобіотик-SAR з MAP1LC3/LC3 мембрани фагофору стимулює 
елонгацію фагофору, що в кінцевому підсумку призводить до 
інкапсулювання продуктів життєдіяльності патогенів та й самих 
патогенів в аутофагосоми, що сприяє дозріванню аутофагосом 
та деградації стороннього матеріалу [11].
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РОЗДІЛ 3.  
ЗАВЕРШАЛЬНИЙ ЕТАП КСЕНОФАГІЇ 
ПРИ ГОСТРИХ РЕСПІРАТОРНИХ 
ІНФЕКЦІЯХ

Г
острі респіраторні інфекції є найпоширенішими за-
хворюваннями серед людської популяції у країнах 
світу. Основними механізмами, що зумовлюють 

виникнення, перебіг та результат цих захворювань, вважають 
механізми епітеліального бар’єра, аутофагії, вродженої та адап-
тивної імунної системи [1–3]. На завершальному етапі ксенофагії 
відбувається формування та дозрівання аутофагосоми. Кінцевим 
етапом дозрівання аутофагосоми є формування аутофаголізосоми, 
яке обумовлено злиттям аутофагосоми з лізосомою. В аутофаго-
лізосомі відбувається деградація інфекційних агентів та продуктів 
їхньої життєдіяльності кислими протеазами лізосоми [4]. Однак 
численні інфекційні агенти можуть перешкоджати злиттю аутофа-
госом і лізосом та використовувати аутофагосому як притулок для 
свого безперешкодного внутрішньоклітинного розмноження [5]. 
Характер розвитку завершального етапу ксенофагії та аутофагії 
зумовлюють ефективність елімінації патогенів із клітин макроор-
ганізму та перебіг інфекційних захворювань, у тому числі й ГРІ.

3.1. Завершальний етап ксенофагії та аутофагії

Внутрішньоклітинно розташовані інфекційні агенти та продук-
ти їхньої життєдіяльності, зв’язуючись внутрішньою мембраною 
фагофору, індукують його елонгацію, що призводить до формуван-
ня сферичної двомембранної структури – аутофагосоми (рис. 10).  
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Закриття пори завершує формування аутофагосоми, секвестру-
ючи сторонній матеріал бактеріального, вірусного або грибкового 
походження. Надалі на першому етапі аутофагосома зливається 
з пізніми ендосомами, формуючи амфісому, а згодом на другому 
етапі амфісома зливається з лізосомою, утворюючи аутофаголі-
зосому [6; 7].

3.2. Закриття пори аутофагосоми

3.2.1. Механізми закриття пори аутофагосоми

Розширення фагофору призводить до зближення країв 
його сферично викривленої мембрани. Незв’язані між собою 
мембранні краї фагофору формують пору, яка зберігає єдність 
внутрішнього континууму фагофору з цитоплазматичним просто-
ром клітини. Закриття пори є останнім кроком у процесі форму-
вання закритої аутофагосоми. Закриття пори фагофору дозволяє 
не тільки інкапсулювати ксенобіологічний вантаж, а й створити 
умови для ефективної ацидифікації внутрішнього середовища 
аутофагосоми. Процес закриття пори включає таку подію, як 
розщеплення мембрани по краю пори, яке опосередковано ен-
досомальними сортувальними комплексами, необхідними для 
механізмів транспорту (endosomal sorting complexes required 
for transport – ESCRT). Комплекси ESCRT (ESCRT‑0, ESCRT-I, 
ESCRT-II, ESCRT-III) являють собою групи високо консервативних 
протеїнів вакуолярного сортування білків VPS, які беруть участь 
у процесах розщеплення клітинних мембран (табл. 4) [8; 9].

Комплекс ESCRT-I, що складається з протеїнів HRS, STAM‑1 
і відповідає за розпізнавання убіквітинульованих субстратів, 
утворює суперкомплекс з білком X, який взаємодіє з ALG2 
(ALG2‑interacting protein X – ALIX). Суперкомплекс ESCRT-I/
ALG2 та ESCRT-II рекрутують на краї пори фагофору білок 
мультивезикулярних тілець 2A (charged multivesicular body 2A – 
CHMP2A) комплексу ESCRT-III. Надалі протеїни CHMP2A фор-
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мують мультимери, які мають здатність згинати й розривати 
мембрани фагофору. Розрив мембрани країв пори призводить до 
злиття мембранних країв пори фагофору, що зумовлює закриття 
пори, формування аутофагосоми та секвестрацію ксенобіотичних 
субстратів у внутрішньому континуумі аутофагосоми. Після за-
криття пори до мультимерів CHMP2A, розташованих на зовнішній 
мембрані аутофагосоми, рекрутуються молекули AAA+АТФази 
VPS4, які утворюють функціонально активний VPS4‑гексамер. 
Використовуючи енергію, отриману в результаті гідролізу АТФ, 
VPS4 розбирає комплекс ESCRT-III та дисоціюється на свої 
неактивні протомери (рис. 11) [10–12].

Таблиця 4
Протеїни комплексів ESCRT

Комплекс Білки
ESCRT‑0 HRS; STAM1,2
ESCRT-I MVB12 A, B; TSG101; VPS28; VPS37 A, B, C, D

ESCRT-II EAP20, EAP30, EAP45

ESCRT-III CHMP1 A, B; CHMP2 A, B; CHMP3; CHMP4 A, B, C; CHMP5; CHMP6; 
CHMP7; CHMP8 (IST1)

AAA-ATФаза VTA1 (LIP5, SBP1); VPS4A/B (SKD1)
Деубіквітиназа ALIX (AIP1)
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Окрім комплексів ESCRT, процес закриття пори фагофору 
контролюється білками ATG; Rab гідролазами, які зв’язують 
і гідролізують гуанозинтрифосфат (ГТФазами); Rab-пов’язаними 
протеїнами; рецепторами солютабного фактору приєднання біл-
ків, чутливих до N-етилмалеїму (soluble NSF attachment receptor – 
SNARE); іонами кальцію та сфінгомієліном (табл. 5) [10].

Таблиця 5
Роль білків ATG, Rab ГТФаз, Rab-пов’язаних протеїнів, SNARE, 

сфінгомієліну та іонів кальцію у процесі закриття пори 
аутофагосоми [10]

Протеїн Функціональна роль
Протеїни ATG

ATG2 Протеїни ATG2A і ATG2B сприяють закриттю пори фагофору
ATG3 Протеїн ATG3 рекрутує MAP1LC3/LC3 до фагофору, що сприяє 

звуженню діаметра пори фагофору
ATG4A, B Надекспресія домінантного негативного мутанта Atg4BC74A при-

гнічує кон’югацію MAP1LC3/LC3-PE і призводить до накопичення 
фагофорів

ATG5 Дефіцит ATG5 перешкоджає закриттю пори фагофору
GABARAPs Порушення формування димера ATG2-GABARAP призводить до 

накопичення фагофорів
Rab ГТФази

Модуль Vps21 
(Rab ГТФаза 
Vps21, GEF Vps9)

Дефіцит Rab ГТФаз супроводжується збільшенням кількості фа-
гофорів

Rab-пов’язаний протеїн
CK1δ/Hrr25 казе-
їнкіназа (Rab1/
Ypt1 ефектор)

CK1δ сприяє закриттю пори фагофору

Протеїн SNARE
Синтаксин 13 Синтаксин 13 сприяє закриттю пори фагофору
Протеїн внутрішньоклітинного обміну везикулами
TRAPC11 Субодиниця 11 комплексу транспортних білкових частинок 

(trafficking protein particle complex subunit 11 – TRAPC11) рекру-
тує ATG2B-WIPI4

Інші
Сфінгомієлін Перешкоджає закриттю пори фагофору
Іони кальцію Підвищення концентрації іонів кальцію блокує закриття пори фа-

гофору
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3.2.2. Вплив респіраторних інфектів на закриття  
пори аутофагосоми

Респіраторні віруси істотно впливають на процеси утворен-
ня амфісоми в інфікованих клітинах макроорганізму. Протеїни 
оболонкових вірусів, які містять домен L (late-budding domains), 
залучають компоненти системи ESCRT клітин макроорганізму. 
Вірус-опосередкований рекрутинг протеїнів системи ESCRT 
сприяє реплікації, дозріванню та відбрунькуванню від поверхні 
мембрани клітини причинно-значущих вірусів. Топологія від-
брунькування оболонкових вірусів подібна до топології відбрунь-
кування везикул у просвіт пізньої ендосоми / мультивезикуляр-
ного тільця (late endosome/multivesicular body – LE/MVB), яке 
відбувається в межах ендоцитарного транспорту. Встановлено, 
що запозичення цитолеми клітини та вивільнення вірусів, таких 
як: ретровіруси, ареновіруси, рабдовіруси, філовіруси, реовіруси 
та параміксовіруси – з інфікованих клітин залежать від функціо-
нування системи ESCRT [13–16]. Залучені вірусами протеїни 
комплексів ESCRT‑0 та ESCRT-II сприяють інвагінації мембра-
ни та остаточному формуванню оболонкових вірусоподібних 
частинок (enveloped virus-like particles – eVLP). Вивільнення 
новоствореної eVLP здійснює комплекс ESCRT-III [17]. Майже 
всі відомі оболонкові віруси під час брунькування рекрутують 
протеїн VPS4, який, на думку Yichen Ju та співавт. [18], є ключо-
вим молекулярним компонентом відбрунькування eVLP.

Продемонстровано, що протеїни M параміксовірусу містить 
домен L, який рекрутує комплекс ESCRT. Так, протеїн M1 вірусу 
IAV пов’язується з фактором VPS28 комплексу ESCRT-I, що 
викликає індукцію брунькування вірусів. Водночас недостатність 
продукування ендогенного протеїну VPS28 не істотно впливає на 
брунькування IAV, тому що протеїн M2 вірусу IAV має здатність 
самостійно формувати везикулу [19; 20].

Віруси SARS-CoV‑2 використовують пізній ендосомальний 
/ лізосомальний шлях для вивільнення віріонів. Показано, що 
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представництво віріонів SARS-CoV‑2 особливо високе в ендосо-
мах, що марковані пізнім протеїном 1, асоційованим з мембраною 
лізосоми (lysosomal-associated membrane protein 1 – LAMP1). 
Інфікування SARS-CoV‑2 призводить до значного підвищення 
рівнів LAMP1. Пізня ендосомальна / лізосомальна ГТФаза Rab7a 
бере участь в ендолізосомальному дозріванні і, мабуть, має 
вирішальне значення для вивільнення вірусу [21–23].

Продемонстровано, що цитоплазматичний хвіст 
S-глікопротеїну SARS-CoV‑2 безпосередньо рекрутує білки 
TSG101 і ALIX системи ESCRT для індукції самоскладання eVLP 
і вивільнення вірусу з клітин [24].

Таким чином, віруси не тільки використовують систему 
ESCRT та мембрани клітини для формування eVLP, але й спри-
яють закриттю пори фагофору. Вважають, протеїни системи 
ESCRT є перспективними мішенями для медикаментозної терапії 
гострих респіраторних вірусних інфекцій [18].

3.3. Дозрівання аутофагосоми

3.3.1. Стадії та механізми дозрівання аутофагосоми

Після секвестрації ксенобіотичних матеріалів розташованого 
в цитоплазмі клітини макроорганізму індукуються механізми, 
які сприяють дозріванню новоутворених двомембранних ауто-
фагосом. Процес дозрівання аутофагосом характеризується 
двома наступними злиттями із внутрішньоклітинними смуговими 
органелами. Спочатку аутофагосоми зливаються з пізніми ен-
досомами / мультивезикулярними тільцями, а потім з лізосомою 
(рис. 12) [25].

Найважливішим етапом дозрівання аутофагосоми є її злиття 
з пізньою ендосомою, що зумовлює формування проміжної гі-
бридної органели, яка отримала назву «амфісома» (amphisome). 
Ця подія дозволяє новоствореним аутофагосомам отримати 
транспортну рухливість і здатність пересуватися до клітинних 
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Рис. 12. Дозрівання аутофагосоми

компартментів, де розташовуються протеолітично активні лізо-
соми. У процесі формування амфісом беруть участь малі Rab 
ГТФази, рецептори SNARE та сортувальні комплекси ESCRT [26].

У клітинах ссавців ідентифіковано приблизно 65 білків сімей-
ства Rab ГТФаз, які, як відомо, є еволюційно консервативними 
регуляторами транспорту везикул-носіїв цитоскелетними доріжка-
ми. Основними функціями мембранозв’язаних малих Rab ГТФаз, 
які беруть участь в аутофагії, є: 1) регуляція транспортування 
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внутрішньоклітинних мембран у певні компартменти цитоплазми 
клітин, рекрутуючи до мембран моторні білки; 2) зв’язування мем-
бран органел та везикул. Активність Rab ГТФаз контролюється 
функціонуванням специфічними факторами обміну гуанінових 
нуклеотидів (guanine nucleotide exchange factors – GEF) та білками, 
що активують ГТФазу (GTPase-activating proteins – GAP). Фактор 
GEF обумовлює обмін ГДФ на ГТФ на молекулі Rab ГТФази, що 
змінює конформацію останньої в таку, яка дозволяє Rab ГТФазі 
взаємодіяти з факторами зв’язування, закріпленими на мембрані 
ендосоми. Протеїни GAP стимулюють внутрішню активність 
ГТФази, що викликає гідроліз ГТФ до ГДФ і призводить до вивіль-
нення молекули Rab ГТФази з мембрани клітини в цитоплазму. 
Рекрутування Rab ГТФазами моторних протеїнів сприяє цільо-
вому переміщенню органел у певні компартменти клітини, де 
відбуватиметься їх злиття. Показано, що в процесі формування 
амфісоми під час ксенофагії беруть участь Rab5 та Rab7 ГТФази, 
асоційовані з мембранами ранніх та пізніх ендосом відповідно. 
Так, Rab5 ГТФаза опосередковує злиття ранніх ендосом із везику-
лами, а Rab7 ГТФаза – злиття пізніх ендосом з аутофагосомою та 
амфісоми з лізосомою. Необхідно зазначити, що для формування 
амфісоми та аутофаголізосоми необхідною є тільки Rab7 ГТФаза, 
яка сприяє подальшому складанню комплексу SNARE [26–29].

На поверхні мембрани ендосоми під час її транспортування 
збирається комплекс протеїнів v-SNARE (синаптобревін), а на 
мембрану цільової везикули або органели рекрутується комплекс 
протеїнів t-SNARE (синтаксин 1, SNAP‑25). При взаємодії v- та 
t-протеїнів SNARE, розташованих на мембранах різних структур, 
утворюється комплекс транс-SNARE (синаптобревін, синтаксин 
1 і дві молекули SNAP‑25), який як зіпер зближує дві протилежні 
мембрани й зумовлює їхнє злиття [30–32].

Також у процесі злиття ендосом та аутофагосом беруть участь 
протеїни ESCRT. Зокрема, продемонстровано, що мутації генів, які 
кодують протеїни ESCRT, перешкоджають формуванню амфісом 
та пригнічують ефективність аутофагії. У злитті амфісоми та лізо-
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соми беруть участь такі протеїни, як ГТФази Rab; протеїни SNARE; 
білок 29, асоційований із синаптосомою (synaptosome-associated 
protein 29 – SNAP29); протеїн SNAP47; мембранні протеїни, 
асоціювання з везикулами 7 та 8 (vesicle-associated membrane 
protein – VAMP); STX17; протеїн 1 сімейства M, що містить домен 
гомології плекстрину та домен RUN (pleckstrin homology and RUN 
domain containing M1 – PLEKHM1); пальмітоїлтрансфераза YKT6 
(palmitoyltransferase YKT6) та інші протеїни [26].

Амфісоми при участі Rab ГТФаз транспортуються до лізосом 
і зливаються з ними. Так, Rab7 ГТФаза зв’язується з протеїном, 
що взаємодіє з Rab (Rab interacting lysosomal protein – RILP), 
індукує виникнення зв’язку між RILP і моторним комплексом 
динеїн-динактин. Активність моторного протеїну динеїну обумов-
лює транспортування амфісоми на мінус-кінець мікротрубочок до 
γ-тубулін-позитивних центросом для подальшого їх злиття з лі-
зосомами [33; 34]. Втрата динеїну супроводжується порушенням 
злиття аутофагосоми та лізосоми. Переміщення аутофагосом від 
мембрани апарату Гольджі в центральну зону цитоплазми, яка 
оточує центр організації мікротрубочок («перинуклеарна хмара»), 
де локалізуються пізні ендосоми та лізосоми, зумовлює злиття 
аутофагосом та лізосом. Акумуляція лізосом на периферії ци-
топлазми клітини блокує злиття амфісоми та лізосоми [32; 35].

Вважають, що ключовими молекулярними гравцями, які 
зумовлюють злиття амфісоми та лізосоми, є протеїни STX17, 
SNAP29, YKT6 аутофагосоми та Rab7, VAMP7, VAMP8 лізосо-
ми. Найбільш вивченими типами злиття амфісоми та лізосоми 
вважають процеси, в якому беруть участь комплекси STX17-
SNAP29-VAMP7/VAMP8 та STX17-SNAP47-VAMP7/VAMP8. 
Протеїн STX17, розташований на мембрані амфісоми, зв’язується 
з синаптосомно-асоційованими білками SNAP29 або SNAP47, які 
своєю чергою асоціюються з везикуло-асоційованими мембран-
ними білками VAMP7 або VAMP8, розташованими на мембрані 
лізосоми. У процесі злиття амфісоми та лізосоми також беруть 
участь інші фактори зв’язування, у тому числі ATG14 та комплекс 
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гомотипічного злиття та сортування білків (homotypic fusion and 
protein sorting – HOPS), який містить VPS11, VPS16, VPS18, 
VPS33, VPS39 і VPS41 [36; 37]. Протеїн STX17, розташований 
на мембрані амфісоми, та ГТФаза Rab7 лізосоми рекрутують 
комплекс HOPS до місця злиття мембран. Компоненти комплексу 
HOPS – VPS16, VPS33A – безпосередньо взаємодіють з протеї-
ном STX17, що сприяє приєднанню аутофагосоми до лізосоми 
і подальшому злиттю аутофагосоми з лізосомою [38]. ГТФаза 
Rab7 лізосоми опосередковано рекрутує комплекс HOPS, залу-
чаючи протеїн PLEKHM1, який також може зв’язуватися з білком 
MAP1LC3A аутофагосом (рис. 13) [36; 39; 40; 41].

 

 

Рис. 13. Молекулярні механізми злиття аутофагосоми та лізосоми
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Рис. 13. Молекулярні механізми злиття аутофагосоми  
та лізосоми
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Після остаточного формування аутофагосоми, вона зли-
вається з лізосомою, утворюючи аутофаголізосому, яка також 
називається аутолізосомою. В аутофаголізосомі секвестровані 
протеїни та органели руйнуються лізосомальними ферментами 
[42; 43].

Лізосоми є ключовими внутрішньоклітинними органелами, 
які визначають ефективність завершального етапу аутофагії та 
ксенофагії. Ключовим протеїном, який регулює біогенез лізо-
сом, є і фактор транскрипції EB (transcription factor EB – TFEB), 
який належить до сімейства факторів транскрипції лейцинової 
блискавки типу «спіраль-петля-спіраль» (helix-loop-helix – HLH). 
Активність TFEB регулюється трансляційними модифікаціями, 
такими як фосфорилювання, ацетилювання та інші [44–46]. 
Основним регулятором активності TFEB є комплекс mTORC1, 
який фосфорилює серинові залишки (S122, S142 та S211) амінокис-
лотної послідовності протеїну TFEB, що запобігає його ядерному 
імпорту. Зниження активності mTORC1 супроводжується дефос-
форилуванням та активуванням протеїну TFEB. Крім того, фак-
тор транскрипції TFEB також може фосфорилюватися кіназами 
ERK2, AKT та GSK3β [44; 47]. Активований фактор транскрипції 
TFEB транслокується в ядро клітини, де зв’язується з промото-
рами генів, що належать до мережі елемента координованої 
експресії та регуляція лізосомальних генів (coordinated lysosomal 
expression and regulation – CLEAR). Промотори генів цієї лізо-
сомної мережі містять одну або кілька послідовностей з 10 пар 
основ (5’-GTCACGTGAC‑3’). TFEB-опосередковане підвищення 
рівня експресії генів мережі CLEAR індукує лізосомальний біо-
генез. Фактор транскрипції TFEB також сприяє експресії генів, 
пов’язаних з аутофагією, таких як ген селективного аутофагічного 
рецептора, включаючи гени сімейства секвестосоми SQSTM, 
білок 9B, пов’язаний з аутофагією (AuTophaGy 9B – ATG9B), 
MAP1LC3/LC3 [48–51]. Крім того, активація факторів транскрипції 
TFEB і TFE3 супроводжується посиленням деградації довгожи-
вучих білків, протеїнів інфекційних агентів, ліпідних крапель та 
пошкоджених мітохондрій [47; 48].
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Фізіологічна роль фактору транскрипції не обмежується 
участю TFEB у лізосомальному біогенезі, елонгації фагофору, 
посиленні злиття аутофагосоми та лізосоми [52]. Фактор транс-
крипції TFEB також підвищує рівень експресії власного гена, гена 
коактиватора ядерного рецептора α, активованого проліферато-
ром пероксисом (co-activator of the nuclear receptor peroxisome 
proliferator-activated receptor α – PGC1α) [44]. Медикаментозна 
регуляція активності фактору транскрипції TFEB може використо-
вуватися при лікуванні різних захворювань, у тому числі ГРІ [53].

3.3.2. Вплив респіраторних вірусів на процес злиття 
амфісоми з лізосомою

Деякі респіраторні віруси, такі як: IAV, SARS-CoV‑2, вірус 
парагрипу (human parainfluenza virus – HPIV) – істотно впливають 
на процеси дозрівання аутофагосоми (табл. 6).

Таблиця 6
Вплив респіраторних вірусів на процес злиття амфісоми 

з лізосомою [5]

Вірус Ефект впливу вірусів на злиття амфісоми з лізосомою
IAV Протеїн M2 вірусу IAV інгібує взаємодію TBC1D5 з Rab7, що пригнічує 

злиття аутофагосом з лізосомами та індукує накопичення амфісом
HPIV3 Фосфопротеїн вірусу HPIV3 зв’язується з SNAP29, тим самим запо-

бігає взаємодії SNAP29 з STX17, що пригнічує злиття аутофагосоми 
та лізосоми

SARS-CoV‑2 Протеїни ORF3a і ORF7a вірусу SARS-CoV‑2 пригнічують злиття ауто-
фагосом з лізосомами, використовуючи різні молекулярні механізми

Інфікування епітеліальних клітин легенів A549 вірусами IAV 
викликає збільшення кількості MAP1LC3/LC3+аутофагосом, які 
не зливаються з лізосомами. Вважають, що протеїн M2 вірусу 
IAV блокує злиття амфісом з лізосомами [54]. Також матрикс-
ний протеїн M2 вірусу IAV скасовує зв’язування Rab7 ГТФази 
з білком 5 сімейства доменів TBC1 (TBC1 domain family member 
5 – TBC1D5), який функціонує як GAP. Водночас асоціація Rab7 
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ГТФази з TBC1D5 сприяє залученню комплексу HOPS у місце 
злиття мембран та SNARE-залежному злиттю пізніх ендосом 
з аутофагосомами та амфісом з лізосомами [55]. Віруси грипу 
A в дендритних клітинах не тільки запобігають злиттю аутофаго-
сом та лізосом, але й сприяють злиттю аутофагосом з компарт-
ментом MHC класу II (MIIC), що сприяє презентації антигенів IAV 
пептидам MHC–II. Таким чином, IAV, з одного боку, інгібує злиття 
амфісом та лізосом, а з іншого – сприяє презентації антигенів IAV 
CD4+Т-клітинам, що зумовлює посилення специфічної відповіді 
імунної системи [56]. Продемонстровано, що IAV-опосередковане 
інгібування злиття амфісом та лізосом сприяє персистенції бак-
терій Streptococcus pneumoniae у пневмоцитах, макрофагах та 
нейтрофілах макроорганізму. Ймовірно, зниження активності 
формування аутофаголізосоми при ГРІ, спричинені IAV, є ос-
новною причиною важкого та ускладненого перебігу наступних 
інфекцій, спричинених пневмококами [57].

Вірус парагрипу людини 3 типу (HPIV3), блокуючи злиття 
аутофагосом та лізосом, викликає неповну аутофагію, що призво-
дить до збільшення реплікації вірусного геному, але не впливає 
на синтез вірусного білка. Фосфопротеїн вірусу HPIV3 зв’язується 
з SNAP29, тим самим запобігає взаємодії SNAP29 з STX17, що 
пригнічує злиття аутофагосоми та лізосоми [58].

Віруси SARS-CoV‑2 пригнічують злиття амфісоми та лізосо-
ми, використовуючи білки ORF3a та ORF7a. Одним із можливих 
механізмів цього інгібування вважають здатність протеїну ORF3a 
вірусу SARS-CoV‑2 індукувати акумуляцію протеїну VPS39, 
який є компонентом комплексу HOPS, на мембранах пізніх 
ендосом і лізосом, що призводить до придушення взаємодії 
комплексу HOPS з STX17 амфісоми [59–62]. Зв’язування вірус-
ного протеїну ORF3a з VPS39 не тільки негативно впливає на 
складання комплексу HOPS, але і на формування комплексу 
STX17-SNAP29-VAMP8, який необхідний для злиття аутофаго-
соми та лізосоми [63]. Згідно з результатами дослідження Lennart 
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Koepke та співавт. [64] обидва протеїни ORF3a та ORF7a вірусу 
SARS-CoV‑2 впливають на ефективність аутофагії. Якщо протеїн 
ORF3a запобігає злиттю аутофагосом і лізосом, то, на думку Peili 
Hou та співавт. [65], протеїн ORF7a має вплив на аутофагію, 
що викликає прямо протилежні ефекти. Так, протеїн ORF7a, 
з одного боку, ініціює аутофагію, використовуючи AKT/mTORC1/
ULK1 сигнальний шлях, а з іншого боку, він, активуючи каспазу 
3, посилює розщеплення протеїну SNAP29, що перешкоджає 
злиттю амфісоми з лізосомою та сприяє акумуляції аутофаго-
сом. Відомо, що ORF7a-опосередкована внутрішньоклітинна 
акумуляція аутофагосом призводить до посилення реплікації 
геному SARS-CoV‑2. Продемонстровано, що протеїн ORF7a 
вірусу SARS-CoV‑2 активує MAP1LC3-II/LC3-II та сприяє нако-
пиченню аутофагосом у цитоплазмі інфікованих клітин [66; 67]. 
Також протеїн ORF7a знижує активність лізосом і, таким чином, 
пригнічує деградуючу потенцію аутофаголізосоми [68]. Також інші 
білки SARS-CoV‑2, такі як M та E, блокують злиття амфісоми й 
лізосоми та викликають накопичення аутофагосом [64].

Найважливішим аспектом інфекційного процесу, викликаного 
бактеріями Mycobacterium tuberculosis, є здатність їх протеїнів 
сімейства PE_PGRS, будова молекул яких характеризується 
наявністю домену PE та C-термінального регіону, що містить 
численні повтори Gly-Gly-Ala або Gly-Gly-Asn, суттєво пригнічува-
ти активність. Внаслідок PE_PGRS-опосередкованої дисфункції 
ксенофагії збільшується виживання мікобактерій і туберкульозна 
інфекція набуває латентного перебігу [69].
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РОЗДІЛ 4.  
МЕДИКАМЕНТОЗНА МОДУЛЯЦІЯ 
АКТИВНІСТЮ КСЕНО- И АУТОФАГІЇ

Г
острі респіраторні інфекції протягом останніх де-
сятиліть стійко посідають перше місце у структурі 
інфекційних захворювань [1–3].

Виникнення, розвиток рекурентного перебігу та 
ймовірність несприйнятливого результату ГРІ залежить від безлічі 
екзо- та ендогенних факторів, у тому числі від реакції механізмів 
неселективної та селективної аутофагії макроорганізму. Одна 
з форм селективної аутофагії, яка дістала назву «ксенофагія», 
зумовлює деградацію респіраторних інфектів та одужання хворих 
на ГРІ. Підвищення активності ксенофагії супроводжується поси-
ленням кліренсу патогенних мікроорганізмів, включаючи високо 
вірулентні віруси, бактеріальні штами з множинною лікарською 
стійкістю (multidrug-resistant – MDR), та обмеженням активності 
запальної реакції макроорганізму на інвазію інфекційного агента 
[4; 5]. Рівень ефективності елімінації інфекційних агентів ауто-
фагічними механізмами істотно залежить від збудника. Якщо 
ксенофагія при бактеріально-асоційованих інфекціях переважно 
сприяє елімінації патогену, зниженню запалення та одужанню 
хворих, то при вірус-асоційованих інфекціях аутофагічні ефекти 
мають етіозалежний характер. Наприклад, розвиток інфекції 
SARS-CoV‑2 індукує аутофагію, яка може сприяти як активності 
реплікації вірусу, блокуючи ксенофагію та лізуючи протеїни, які 
сприяють інтерфероновій відповіді [6; 7], так і перешкоджати ре-
плікації вірусу, деградуючи вірусні протеїни [8]. Також при гострій 
респіраторній вірусній інфекції, спричиненій IAV, активуються 
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механізми аутофагії та вірофагії, які відіграють критичну роль 
в елімінації вірусів та активації як уродженої, так і набутої імун-
ної системи. Водночас IAV має здатність блокувати дозрівання 
аутофагосоми, що створює умови для ефективної реплікації 
вірусу [9]. Результати численних досліджень продемонструва-
ли, що застосування модуляторів неселективної та селективної 
аутофагії може мати вирішальний вплив на процеси саногенезу 
ГРІ [10–12].

Процеси аутофагії та ксенофагії є послідовністю декількох 
стадій внутрішньоклітинних подій, серед яких розрізняють період 
ініціації, асоційований з ранніми стадіями аутофагії, та період 
формування аутофаголізосоми й остаточної деградації вантажу, 
який спостерігається в пізні стадії аутофагії. На сьогодні розро-
блені лікарські засоби, які модулюють активність аутофагії в її 
ранній та пізній періоди [13].

Медикаментозна регуляція активності аутофагії і ксенофагії 
в їх ранній період з використанням препаратів, які впливають на 
mTORC1‑залежні та mTORC1‑незалежні сигнальні шляхи, стане 
новим напрямом терапії ГРІ, особливо з тяжким перебігом та 
несприятливим прогнозом результату захворювання.

4.1.	 Модулятори активності раннього  
періоду ксено- і аутофагії

4.1.1. Активатори АМФ-активованої протеїнкінази

AMФ-активована протеїнкіназа (AMP-activated protein kinase – 
AMPK) є ключовим сенсором поживних речовин та регулятором 
енергетичного балансу. Зниження внутрішньоклітинної концен-
трації аденозинмонофосфату (AMФ) активує AMPK, яка, фос-
форилюючи підпорядковані молекулярні мішені, призводить до 
інгібування анаболічних та активації катаболічних процесів, що 
зумовлює відновлення енергетичного гомеостазу. Також AMPK 
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інгібує комплекс mTORC1 і, як наслідок, посилює аутофагію та 
пригнічує активність апоптотичної загибелі клітин [14; 15]. Першим 
лікарським засобом, що активує AMPK, був 5‑аміноімідазол‑4‑кар-
боксамід рибонуклеозид. На сьогодні групу активаторів AMPK 
становлять численні препарати, а саме: метформін, фенформін, 
буформін, трегалоза, галегін, кверцетин, ресвератрол, бербамін, 
α-ліпоєва кислота, A‑769662, MK‑872, MT‑63–78, PF- 06409577, 
PF‑249, PF‑739 та інші (табл. 7) [16; 17].

Таблиця 7
Активатори АМФ-активованої протеїнкінази

Препарат Таргетний 
вірус

Механізм дії Ефект Джерело

Бігуанідні препарати
Метформін IAV, SARS-

CoV‑2
Інгібування комп-
лексу I дихального 
ланцюга

Активація аутофагії.
Підвищення чутливості 
до інсуліну

[18; 19]

Фенформін IAV, SARS-
CoV‑2

Інгібування комп-
лексу I дихального 
ланцюга

Активація аутофагії.
Підвищення чутливості 
до інсуліну

[20]
Буформін

Дисахариди
Трегалоза SARS-CoV‑2 Індукція AMPK, 

TFEB
Активація аутофагії [21]

4.1.1.1. Бігуанідні препарати
Бігуанідні препарати є малими молекулами, препарати 

яких широко застосовуються при лікуванні хворих на цукровий 
діабет (ЦД) 2 типу. Продемонстровано, що під час епідемії грипу 
у 1971 році у хворих на ЦД 2 типу, які лікувалися бігуанідами, 
спостерігалася нижча частота захворюваності, ніж у хворих на 
ЦД 2 типу, які отримували препарати сульфонілсечовини [20].

4.1.1.1.1. Метформін
Метформін (1,1‑диметилбігуанід, metformin) є лікарським 

засобом рослинного ґенезу, який був виділений з рослини коз-
лятника лікарського (Galega officinalis L.) та схвалений FDA для 
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лікування ЦД 2 типу. Встановлено, що метформін має здатність 
опосередковано активувати AMPK за допомогою інгібування 
комплексу 1 ланцюга перенесення електронів, що призводить 
до зниження продукування АТФ. Слід зазначити, що інгібуван-
ня комплексу I спостерігається лише за дії суперконцентрацій 
метформіну, які використовують у клінічних умовах [22; 23]. 
Метформін чинить протизапальну дію, інгібуючи ядерну трансло-
кацію фактору транскрипції NF-κB. Однак слід зазначити, що 
метформін підвищує ефективність гліколізу, окисного фосфо-
рилювання, окислення ліпідів, що може супроводжуватися ак-
тивацією CD4+Т- та CD8+Т-клітин [24].

Результати ретроспективних та проспективних досліджень 
свідчать про ефективність терапії метформіном хворих на 
COVID‑19 та грип [19; 25]. Застосування метформіну при ліку-
ванні хворих на COVID‑19 в осіб із ЦД 2 типу сприяє зниженню 
тяжкості респіраторного захворювання [26; 27]. Призначення 
метформіну особам, хворим на COVID‑19, знижує ризик нес-
приятливого результату захворювання [28; 29].

Сезонна вакцинація проти вірусу грипу осіб з ЦД 2 типу, 
лікованих метформіном, може призвести до пригнічення реакції 
інтерферону типу 1 і зрештою до недостатньої ефективності 
вакцинації [30].

4.1.1.1.2. Буформін та фенформін
Буформін (buformin) та фенформін (phenformin) сприя-

ють зниженню тяжкості ГРІ, спричинених IAV або SARS-CoV‑2. 
Продемонстровано, що терапія буформіном або фенформіном 
знижує рівень смертності від грипозної інфекції в експеримен-
тальних мишей, причому терапія буформіном ефективніша, ніж 
фенформіном. Інгаляційне введення буформіну або фенформіну 
при грипі та COVID‑19 знижує ризик розвитку побічних ефектів 
цих препаратів [20].
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4.1.1.2. Дисахариди
4.1.1.2.1. Трегалоза
Трегалоза (trehalose) – це дисахарид із двох молекул 

D-глюкози, пов’язаних α, α‑1,1‑глікозидним зв’язком, який ак-
тивує SIRT1, PPAR-α, FOXO1, AMPK та TFEB, що дозволяє їй 
індукувати аутофагію [31–33]. Встановлено, що трегалоза AMPK-
опосередковано знижує активність mTORC1, ініціюючи аутофагію 
та вірофагію, активує фактор транскрипції TFEB, сприяючи біоге-
незу лізосом, також стимулює злиття амфісоми та лізосоми для 
деградації як протеїнів віріонів, так і цілих вірусних агентів [21]. 
Встановлено, що при призначенні трегалози експериментальним 
мишам у дозі 1 г/кг на добу, що еквівалентно 4,8 г/добу на кожні 
60 кг у людей, відзначається підвищення активності аутофагії 
у клітинах тканини легень [34]. Daisy Martinon та співавт. [21] 
пропонують використовувати трегалозу як безпечний препарат 
для лікування хворих з COVID‑19.

4.1.2. Модулятори активності mTORC1

Серин-треонінова кіназа mTOR складається з двох білко-
вих комплексів: mTORC1 та mTORC2. Комплекс mTORC1 ін-
гібує аутофагію, а mTORC2 бере участь у висхідній регуляції 
активності фосфатидилінозитол‑3‑кінази (phosphatidylinositol 
3‑kinases – PI3K). Комплекс mTORC1 являє собою сигнальну 
молекулу, яка, індукуючи трансляцію мРНК, відіграє ключову 
роль у регуляції синтезу білків, проліферації клітин та аутофагії 
[35–37]. Більшість вірусів, інфікуючи клітину макроорганізму, 
активує комплекс mTORC1, що призводить до пригнічення стрес-
індукованої аутофагії та активації механізмів апоптотичної клі-
тинної загибелі [38–40]. Встановлено, що пригнічення mTORC1 
активує протеїн ATG13 комплексу ULK1, який ініціює аутофагію. 
Інгібітори mTORC1 першого ряду представлені рапаміцином 
(сиролімусом) і його аналогами, такими як: гедатолімус, еве-
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ролімус, зотаролімус, ридафоролімус, такролімус, темсіролімус, 
уміролімус – та гетероциклічними препаратами, такими як: іміда-
зол, морфолін, піразин, тіофен, фуран, хіназолін, хінолін. Також 
активність mTORC1 модулюють гепарин, глюкокортикостероїди, 
інгібітори ангіотензинперетворювального ферменту 2 (angiotensin 
converting enzyme 2 – АПФ2/ACE2), інгибитори AMPK, канабідіол 
[41; 42]. Інгібітори mTORC1 безпосередньо активують механізми 
ксенофагії і вважаються перспективними лікарськими засобами, 
які здатні елімінувати вірусні агенти [39; 43–45]. Зокрема, про-
демонстровано, що застосування деяких інгібіторів mTORC1 
у хворих з важкою пневмонією, викликаною вірусом грипу A/H1N1 
і SARS-CoV‑2 сприяє одужанню захворювання (табл. 8) [46].

Таблиця 8
Модулятори активності mTORC1

Препарат Таргетний 
вірус Механізм дії Ефект Джерело

Активатори mTORC1
Антикоагулянти

Гепарин SARS-CoV‑2 Запобігає адге-
зії вірусу SARS-
CoV‑2

Інгібування аутофагії [47]

Агоністи канабіноїдних рецепторів
Канабідіол SARS-CoV‑2 П е р е ш код жа є 

адгезії вірусу 
SARS-CoV‑2

Посилює або послаблює ау-
тофагію та апоптоз клітин 
залежно від типу клітин

[48]

Гормони
Глюкокорти-
костероїди

IAV H1N1
SARS-CoV‑2, 
MERS

Інгібування ре-
крутингу протеї-
ну MAP LC3/LC3

Інгібування аутофагії [49]

Інгібітори ангіотензинперетворювального ферменту 2
Інгібітори 
АПФ2

SARS-CoV‑2 П е р е ш код жа є 
адгезії вірусу

Інгібування аутофагії [50]

Інгібітори mTORC1
Рапаміцин і його рапалоги

Рапаміцин 
(сиролімус)

SARS-CoV‑2 І н г і б у в а н н я 
серин-треонін 
кінази mTORC1

Активація аутофагії [51; 52; 
53]
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Препарат Таргетний 
вірус Механізм дії Ефект Джерело

Ридафо-
ролімус

SARS-CoV‑2 І н г і б у в а н н я 
серин-треонін 
кінази mTORC1

Активація аутофагії [54]

Темсіро-
лімус

SARS-CoV‑2 І н г і б у в а н н я 
серин-треонін 
кінази mTORC1

Активація аутофагії

4.1.2.1. Активатори mTORC1
4.1.2.1.1. Антикоагулянти
4.1.2.1.1.1. Гепарин
Гепарин (heparin) – це високосульфатований аніонний 

глікозаміноглікан, який має антикоагуляційну, противірусну, 
протизапальну та протипухлинну активність. Гепарин пригнічує 
механізми аутофагії [11; 55].

Продемонстровано, що гепарин зв’язується з гепарин-зв’язу-
вальним гемаглютиніном (heparin-binding hemagglutinin – HBHA) 
бактерій Mycobacterium tuberculosis та індукує mTORC1‑асоційо-
ваний сигнальний шлях у клітинах макроорганізму, що призводить 
до інгібування аутофагії [56].

Гепарин і низькомолекулярний гепарин – еноксапарин взає-
модіють з доменом зв’язування з рецептором (receptor binding 
domain – RBD) субодиниці 1 шипоподібного (spike – S) гліко-
протеїну вірусу SARS-CoV‑2, який зв’язується з рецепторною 
молекулою ACE2 клітинної мембрани. Зв’язування молекули 
гепарину або його похідних із субодиницею S1 S-глікопротеїну 
вірусу SARS-CoV‑2 викликає конформаційну зміну субодиниці S1, 
що перешкоджає проникненню вірусу в клітини макроорганізму 
[47; 57; 58]. Терапія нефракціонованим або низькомолекуляр-
ним гепарином, вірогідно, знижує рівень ризику летального ре-
зультату у хворих на COVID‑19, перебіг якого супроводжується 
гіперкоагуляцією [59].

Закінчення табл. 8
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Зараз проводяться кілька клінічних випробувань 
(NCT04393805, NCT04427098, NCT04492254 та NCT04518735) 
для оцінювання ефективності застосування гепарину та його 
низькомолекулярних форм (еноксапарину, далтепарину, тин-
запарину) при лікуванні хворих з COVID‑19 [60].

4.1.2.1.2. Агоністи канабіноїдних рецепторів
4.1.2.1.2.1. Канабідіол
Канабідіол (cannabidiol) – терпеноїд, отриманий із рослини 

коноплі посівної (Cannabis sativa), який має знеболювальні, 
протизапальні, антидепресивні, анксіолітичні, протиепілептичні 
властивості. У різних типах клітин канабідіол індукує або пригні-
чує аутофагію. Показано, що канабіноїди активують PI3K/AKT/
mTOR-асоційований сигнальний шлях у кількох типах імунних 
та неімунних клітин [11; 61; 62].

Канабідіол інгібує інфікування вірусом SARS-CoV‑2 епі-
теліальних клітин респіраторного тракту мишей шляхом зниження 
рівня транскриптів ACE2 та інгібування активності трансмем-
бранної серинової протеази 2 (transmembrane serine protease 
2 – TMPRSS2). Крім блокування проникнення вірусу, канабідіол 
також пригнічує експресію вірусних протеїнів в інфікованих кліти-
нах та активує інтерферон-асоційовані сигнальні шляхи клітин 
макроорганізму [63–66].

Крім противірусної дії канабідіол чинить і протибактеріаль-
ний вплив. Показано, що канабіноїди, включаючи канабідіол, 
Δ9‑тетрагідроканабінол, канабігерол, канабіхромен, канабінол, 
їхні похідні, такі як канабідіолова кислота, канабіхроменова 
кислота, інгібують зростання бактерій метицилін-резистентного 
золотистого стафілокока (methicillin-resistant Staphylococcus 
aureus – MRSA) [67].

Фітоканабіноїди, впливаючи на ендоканабіноїдну систему, 
що, як відомо, контролює функціонування імунної системи, інгі-
бують експресію циклооксигенази 2 і продукування прозапаль-
них цитокінів та хемокінів, що зумовлює зниження активності 
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запальної реакції, викликаної інфекцією. Активація канабіноїдних 
рецепторів 1 типу (cannabinoid type 1 – CB1) пригнічує продукцію 
IL‑12, IL‑2, а рецепторів CB2 – IL‑6, IL‑12, TNFα, CXCL8/IL‑8, 
CCL2, CCL7 [63; 68–70]. Також канабідіол, збуджуючи рецеп-
тори γ, активовані проліфератором пероксисом (peroxisome 
proliferator-activated receptors γ – PPARγ), індукує противірусні 
механізми захисту, пригнічує розвиток легеневого фіброзу та 
надає антиоксидантну дію [71; 72].

Застосування канабідіолу сприяє процесу одужання хворих 
із COVID‑19 [73; 74]. Nicole Paland та. співавт. [70] вважають, що 
медичний канабіс може бути використаний як профілактичний 
та терапевтичний препарат при лікуванні хворих з COVID‑19. 
Однак для остаточного розв’язання питання щодо необхідності 
застосування канабідіолу у хворих з COVID‑19 потрібне прове-
дення подальших досліджень [75].

4.1.2.1.3. Гормони
4.1.2.1.3.1. Глюкокортикостероїди
Глюкокортикостероїди (glucocorticoids), як протизапальні та 

імунодепресивні препарати, успішно застосовуються при ліку-
ванні хворих з тяжким перебігом COVID‑19 та ГРІ, викликаних 
IAV, респіраторно-синцитіальним вірусом (respiratory syncytial 
virus – RSV) [49; 76; 77; 78; 79; 80].

Глюкокортикостероїди пригнічують аутофагію за допомогою 
блокади рекрутингу MAP1LC3/LC3 [12; 81].

Продемонстровано, що при інгаляційному шляху введення 
глюкокортикостероїди (будесонід, флутиказону фуроат, цикле-
сонід) знижують рівень експресії генів ACE2 і TMPRSS2, що 
перешкоджає проникненню вірусів SARS-CoV‑2 в епітеліоцити 
респіраторного тракту макроорганізму та сприяє одужанню 
хворих [82–87]

Глюкокортикостероїди зв’язуються з кількома ділянками 
поверхневого S-глікопротеїну вірусу SARS-CoV‑2 і викликають 
у нього конформаційні зміни, які пригнічують взаємодію SARS-
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CoV‑2 з рецептором ACE2 клітин макроорганізму [88]. Водночас 
кортикостероїди пригнічують швидкість елімінації вірусу SARS-
CoV‑2 з організму хворого [89]. Глюкокортикостероїди знижують 
активність реплікації людського риновірусу (human rhinovirus – 
HRV) у клітинах HeLa, але збільшують рівень реплікації IAV [90; 
91].

У зв’язку з потужною протизапальною дією глюкокортикосте-
роїди широко застосовуються при гострих респіраторних вірус-
них інфекціях, що перебігають з вираженим загальнозапальним 
синдромом. Так, дексаметазон став засобом порятунку життя 
при тяжкій формі COVID‑19, що супроводжується цитокіновим 
штормом [92; 93]. Результати рандомізованого контрольовано-
го дослідження свідчать, що терапія дексаметазоном сприяє 
зниженню рівня летальності серед хворих з тяжким перебігом 
COVID‑19, що супроводжується значним збільшенням продуку-
вання прозапальних цитокінів (IL‑1β, IL‑6, IFN-γ, TNF-α) [94; 95]. 
Також продемонстровано, що прийом 40 мг метилпреднізолону 
кожні 12 годин протягом 5 діб знижує рівень смертності у хворих 
із тяжкою формою COVID‑19 [96].

Водночас, згідно з результатами метааналізів, застосування 
глюкокортикостероїдів при грипі асоціюється з підвищенням 
ризику як розвитку внутрішньошпитальних інфекцій, так і ле-
тального результату захворювання [97].

4.1.2.1.4. Інгібітори ангіотензинперетворювального 
ферменту 2
Фермент ACE2 є рецепторним протеїном епітеліоцитів 

слизової оболонки респіраторного тракту, який забезпечує 
проникнення вірусу SARS-CoV‑2 у клітину, і контррегулятором 
ренін-ангіотензинової системи, який регулює артеріальний тиск, 
функціонування міокарда і запобігає пошкодженню тканини ле-
гені, інгібуючи ангіотензин I-AT1R та активуючи вісь ангіотензин 
I–MasR-асоційовані сигнальні шляхи. Встановлено, що ангіо-
тензин II збільшує кількість аутофагосом у клітинах з високим 
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рівнем рецепторів AT1. Інфікування клітин вірусами SARS-CoV‑2, 
опосередковане рецепторним протеїном ACE2, індукує сигнальні 
шляхи аутофагії та апоптотичної загибелі епітеліоцитів слизової 
оболонки бронхів та ендотеліоцитів мікросудин. Інгібітори ACE2 
не лише перешкоджають проникненню вірусу SARS-CoV‑2 у кліти-
ну, а й пригнічують активність як апоптозу клітин, так і аутофагії 
[99–101]. Підвищений рівень експресії ACE2 асоційований із 
ризиком інфікування вірусом SARS-CoV‑2. В осіб з генотипом GG 
SNV rs2285666 гена ACE2 відзначається дворазове збільшення 
ризику зараження вірусом SARS-CoV‑2, трикратне збільшення 
ризику розвитку тяжкого перебігу захворювання або летального 
результату COVID‑19 [102].

Застосування інгібіторів АПФ (ІАПФ) сприяє зниженню ри-
зику виникнення COVID‑19. Продемонстровано, що у хворих 
з COVID‑19, які отримували ІАПФ або блокатори рецепторів 
ангіотензину II, спостерігався нижчий рівень захворюваності та 
смертності від COVID‑19 [78; 103].

На сьогодні розробляються кілька класів АПФ-
опосередкованих препаратів, які перешкоджають адгезії вірусів 
SARS-CoV‑2 до клітин макроорганізму (табл. 9).
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Експерти Американського коледжу кардіологів (American 
College of Cardiology – ACC), Американського товариства 
серцевої недостатності (Heart Failure Society of America – 
HFSA), Американської кардіологічної асоціації (American Heart 
Association – AHA) та Європейського товариства кардіологів 
(European Society of Cardiolog – ESC) не рекомендують скасо-
вувати призначення інгібіторів АПФ та блокаторів ангіотензино-
вих рецепторів в осіб із серцево-судинними захворюваннями, 
інфікованих SARS-CoV‑2 [105].

Для розв’язання питання про необхідність призначення 
інгібіторів АПФ2 хворим з COVID‑19 необхідні подальші ран-
домізовані дослідження [106].

4.1.2.2. Інгібітори mTORC1
Інфікування респіраторного тракту спричиняє активацію 

рецепторів розпізнавання патогенів (PRR) через взаємодію 
з патоген-асоційованими молекулярними патернами (PAMP) 
мікроорганізмів. Цей процес активує сигнальний шлях, асоцій-
ований із mTORC1, що запускає запальну реакцію та пригнічує 
механізми аутофагії й ксенофагії. Унаслідок цього фармаколо-
гічне інгібування mTORC1‑асоційованого сигнального шляху 
може сприяти елімінації патогена та зменшенню запального 
процесу в респіраторному тракті.

4.1.2.2.1. Рапаміцин і його рапалоги
Peter J Mullen та співавт. [107] вважають, що пригнічення 

активності комплексу mTORC1 його прямими інгібіторами є 
однією з можливих стратегій лікування хворих із COVID‑19.

4.1.2.2.1.1. Рапаміцин
Рапаміцин (rapamycin), або сиролімус (sirolimus, AY22989, 

I2190A, NSC226080, RAPA), являє собою протигрибковий агент 
з потужною протикандидозною активністю, який продукується 
штамом бактерій Streptomyces hygroscopicus, виділених зі зраз-
ків ґрунту острова Пасхи. Рапаміцин також надає противірусну, 
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імуносупресивну та протипухлинну дію. Рапаміцин також має 
здатність протистояти старінню [108; 109; 110; 111].

Продемонстровано, що рапаміцин взаємодіє з РНК-залежною 
РНК-полімеразою (RNA-dependent RNA polymerase – RdRp), яка 
каталізує реплікацію РНК з РНК-матриці та з білком N, який сприяє 
правильному згортанню вірусної РНК та утворенню рибонукле-
опротеїнового комплексу та реплікації РНК вірусу SARS-CoV‑2 
[53]. Використання рапаміцину сприяє зниженню вірусного на-
вантаження в тканинах легень у пацієнтів із COVID‑19 та MERS 
[107; 112–114]. Водночас рапаміцин та його рапалоги сприяють 
проникненню опосередкованому S-глікопротеїном вірусу SARS-
CoV‑2 в клітини макроорганізму, запускаючи деградацію про-
тивірусних інтерферон-індукованих трансмембранних протеїнів 2, 
3 (interferon induced transmembrane protein 2, 3 – IFITM2 і IFITM3) 
шляхом активації макроаутофагії [54]. Призначення рапаміцину 
хворим на пневмонію, викликану вірусом SARS-CoV‑2, не надає 
вірогідного впливу на перебіг та результат COVID‑19 [115].

Слід зазначити, що рапаміцин не чинить противірусної дії 
проти штамів вірусів грипу H1N1, H3N2 [116]. До того ж введення 
рапаміцину, як і інших інгібіторів mTORC1, сприяє реплікації IAV 
і посилює тяжкість перебігу грипозної інфекції в експерименталь-
них тварин [113; 116]. Однак поєднане застосування рапаміцину 
та озельтамівіру знижує ступінь ураження легеневої тканини, 
спричиненого вірусом грипу H1N1, активність осі mTORC1-
NLRP3-IL‑1β та рівень вірусного навантаження.

Ефективність терапії рапаміцином хворих з COVID‑19 вив-
чається у таких дослідженнях, як NCT04482712, NCT04341675, 
NCT04461340, NCT04371640 [53].

4.1.2.2.1.2. Ридафоролімус і темсиролімус
Рідафоролімус (ridaforolimus, AP23573, MK8668) і темси-

ролімус (temsirolimus, CCI‑779) – це інгібітори mTORC1, які 
порівняно з рапаміцином мають вищий ступінь стабільності та 
розчинності у воді [117].
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Рідафоролімус і темсиролімус впливають на реплікацію 
вірусу SARS-CoV‑2 та активність ксенофагії аналогічно рапамі-
цину [39; 118; 119].

4.1.3. Інгібітори PI3K

Внутрішньоклітинний каскад PI3K/AKT/mTOR є сигналь-
ним шляхом, який бере участь у регуляції росту, диференцію-
ванні, проліферації клітин, анаболічних процесів та аутофагії. 
Прикріплення вірусів, таких як IAV та SARS-CoV‑2, до рецепторів 
клітини викликає активацію PI3K- асоційованого-сигнального 
шляху, що сприяє проникненню, реплікації вірусів та збудженню 
вродженої імунної системи макроорганізму. Збудження PI3K/
AKT/mTOR-асоційованого сигнального шляху сприяє активації 
запального процесу. Призначення інгібіторів PI3K індукує ау-
тофагію, викликає противірусні ефекти, зокрема проти вірусів 
SARS-CoV‑2 [120–122].

Інгібітори PI3K представлені пан-і селективними інгібіто-
рами (табл. 10) [123; 124]. Селективні інгібітори PI3K3 мають 
переважний вплив на функціонування механізмів аутофагії, 
знижують вірусне навантаження, запобігають утворенню тромбів 
при гострих респіраторних вірусних інфекціях [125].

Таблиця 10
Інгібітори PI3K

Препарат Таргетний вірус Механізм дії Ефект Джерело
Вортманін SARS-CoV‑2 Інгібування PI3K Інгібування аутофагії [126]
3‑метиладенін SARS-CoV‑2 Інгібування PI3K Активація аутофагії [127]

4.1.3.1. Вортманін
Вортманін (wortmannin) – пан-інгібітор PI3K, отриманий з гри-

ба Penicillium funiculosum. Вортманін викликає загибель клітин 
і перешкоджає збагаченню мембрани фагофору молекулами фос-
фатидилінозитол‑3‑фосфату (phosphatidylinositol 3‑phosphate – 
PI3P), що пригнічує формування фагофору. Незважаючи на його 
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здатність інгібувати PI3K/AKT/mTOR-асоційований сигнальний 
шлях, вортманін пригнічує активність аутофагії [128].

Відомо, що проникнення вірусу SARS-CoV‑2 в альвеолоци-
ти типу 2 включає: 1) зв’язування з тирозинкіназою рецептора 
епідермального фактору росту (ERB-b2 receptor tyrosine kinase 
4 – ERBB4), який розміщується на плазматичній мембрані кліти-
ни; 2) індукцію макропіноцитозу та 3) катепсинове розщеплення 
S-глікопротеїну вірусу. Показано, що вортманін, що пригнічує 
макропіноцитоз, не впливає на реплікацію вірусу SARS-CoV‑2. 
Вважають, що вортманін може бути використаний для лікування 
хворих з COVID‑19 [121; 126; 129].

4.1.3.2. 3‑метиладенін

Інгібітор PI3K – 3‑метиладенін (3‑methyladenine) – діє на 
комплекс PI3KC3 [130]. На відміну від вортманіну, 3‑метиладенін 
сприяє аутофагії. Показано, що 3‑метиладенін сприяє зниженню 
титрів вірусу SARS-CoV‑2 в інфікованих епітеліальних клітинах, 
виділених з тканини товстої кишки (Caco2), та епітеліальних 
клітин, отриманих з нирок африканської зеленої мавпи (Vero 
clone E6) [6].

4.1.4. Інгібітори комплексу PI3KC3

Одним із компонентів комплексу PI3KC3 є протеїн VPS34, 
який як фосфатидилінозитол‑3‑кіназа класу III генерує фосфа-
тидилінозитол‑3‑фосфат, необхідний для елонгації фагофору та 
формування аутофагосоми. Інгібування протеїну VPS34 пригнічує 
аутофагію на ранніх стадіях її розвитку, перешкоджаючи ліпідизації 
протеїнів двомембранних везикул DMV [131; 132]. Ідентифіковано 
кілька прямих інгібіторів VPS34, таких як спаутин‑1 (spautin‑1, 
C43), аутофініб (autophinib) та Compound‑5, Compound‑31, PIK-
III, SB02024, SAR405, VPS34-IN1 та VVPS34-IN [131]. З’єднання 
VPS34-IN1, PIK-III, націлені на протеїн VPS34, є потужними ін-
гібіторами раннього етапу циклу реплікації вірусу SARS-CoV‑2 
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[133]. Інгібування комплексу PI3KC3, який бере участь в ініціації 
канонічної та неканонічної аутофагії, за допомогою наномолярних 
концентрацій VPS34-IN1 та його аналога VVPS34-IN1 викликало 
вірогідне пригнічення реплікації вірусів SARS-CoV‑2 у тканинах 
легень людини [134]. Інгібітори протеїну VPS34 збільшують се-
крецію хемокінів, що рекрутують Т-клітини [135].

4.1.5. Інгібітори ULK1

Серин-треонінова протеїнкіназа ULK1 відіграє ключову роль 
в ініціації аутофагії. Зниження активності комплексу mTORC1 
індукує ULK1 та ATG13. Після активації комплекс ULK1 рекру-
тується до місця збирання фагофору, що сприяє зародженню 
аутофагосоми. Інгібування комплексу ULK1 викликає пригнічення 
активності аутофагії. Основними блокаторами комплексу ULK1 
є Compound 6, MRT67307, MRT68921, SBI‑0206965, ULK1–100, 
ULK‑101 [136; 137]. Вірус SARS-CoV‑2 за допомогою папаїн-
подібної протеази розщеплює молекулу ULK1, перешкоджа-
ючи ксенофагії. Однак вплив комплексу ULK1 на реплікацію 
коронавірусу, вивчений на моделі інфекції, спричиненої β-ко-
ронавірусом мишачого гепатиту MHV-A59, залежить від фази 
захворювання. Так, у початковий період інфекційного процесу 
комплекс ULK1 пригнічує реплікацію вірусу, а на пізніх стадіях 
інфекції він може сприяти активності реплікації коронавірусу. 
Тому вважають, що терапія коронавірусної інфекції інгібіторами 
ULK1 повинна проводитися в пізній період інфекційного процесу 
[138]. Призначення малої молекули MRT67307 сприяє зниженню 
рівня інфільтрації імуноцитами вогнища запалення в легенях 
мишей, інфікованих SARS-CoV‑2 [139].

4.1.6. Інгібітори кальпаїнів

Кальпаїни є внутрішньоклітинними кальцій-залежними ци-
стеїновими протеазами, які беруть участь у регуляції аутофагії та 
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виживання клітин. Кальпаїн-опосередковане інгібування аутофагії 
зумовлене здатністю кальпаїнів деградувати супресор росту 
пухлин, який є гомологом фосфатази та тензину (pohosphatase 
and tensin homolog – PTEN), що призводить до накопичення 
PI3P та активації комплексу mTORC1 [140; 141]. Підвищення 
активності комплексу mTORC1 викликає пригнічення аутофа-
гічної активності [142].

Інфікування клітин макроорганізму вірусними агентами 
індукує підвищення позаклітинної концентрації іонів кальцію, 
що призводить до активації кальпаїну, який збуджує кальцієві 
канали TRPC5 та TRPC6, зумовлюючи підвищення рівня іонів 
кальцію у внутрішньому континуумі клітини та зниження їх кон-
центрації в екстрацелюлярному просторі. Зниження концентрації 
сироваткового кальцію у пацієнтів із COVID‑19 є однією з SARS-
CoV‑2‑опосередкованих подій [143]. Проникнення вірусу SARS-
CoV‑2 у клітину макроорганізму опосередковано взаємодією 
вірусу зі специфічними рецепторами ACE2 клітин макроорганізму. 
Після того як домен RBD субодиниці S1 спайк-протеїну вірусу 
SARS-CoV‑2 зв’язується з рецепторним протеїном ACE2 клітин 
макроорганізму, відбувається TMPRSS2‑опосередковане проте-
олітичне розщеплення S-глікопротеїну на межі субодиниць S1/S2, 
після якого конформаційно змінена субодиниця S2 опосередко-
вує злиття мембран вірусу та клітин макроорганізму. Кальпаїн 2 
індукує збільшення представництва молекул ACE2 на мембра-
нах епітеліоцитів слизової оболонки респіраторного тракту, що 
взаємодіє з субодиницею S1 S-глікопротеїну вірусу SARS-CoV‑2. 
Таким чином, кальпаїн 2 сприяє адгезії та проникненню вірусу 
SARS-CoV‑2 у клітини респіраторного тракту макроорганізму 
[144]. Інгібітори кальпаїну 2 підвищують активність аутофагії, 
ксенофагії та пригнічують проникнення вірусів у клітини [145].

Інгібіторами кальпаїнів є кальпептин, лейпептин, AK295, 
E64c, MDL‑28170 (табл. 11) [146–148].
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Таблиця 11
Інгібітори кальпаїнів

Препарат Таргетний вірус Механізм дії Ефект Джерело
Кальпептин SARS-CoV‑2 Інгібування 

проникнення ві-
русу SARS-CoV‑2 
у клітини

Активація аутофагії [149]

Лейпептин SARS-CoV‑2 Інгібування 
проникнення ві-
русу SARS-CoV‑2 
у клітини

Активація аутофагії [150]

4.1.6.1. Кальпептин
Кальпептин (calpeptin) є надзвичайно потужним специфічним 

інгібітором цистеїнових протеаз, який перешкоджає проникненню 
вірусу SARS-CoV‑2 у клітини макроорганізму [110]. Лікування 
кальпептином у дозі 1 мг/кг маси тіла золотистих сирійських 
хом’яків, інфікованих SARS-CoV‑2, вірогідно знижує вірусне 
навантаження у тканинах трахеї. Вважають, що терапія каль-
пептином є перспективним підходом до лікування COVID‑19 та 
інших вірусних інфекцій [149].

4.1.6.2. Лейпептин
Лейпептин (leupeptin) – є інгібітором широкого спектра 

серинових, цистеїнових та треонінових протеаз (кальпаїну 
5 та катепсинів B6, H та L7) [41]. Продемонстровано, що лей-
пептин, взаємодіючи з трансмембранною сериновою протеазою 
TMPRSS2, пригнічує проникнення вірусу SARS-CoV‑2 у клітину 
[150; 151].

4.1.6.3. Препарат MDL‑28170
Препарат MDL‑28170 є інгібітором кальпаїнів, який протидіє 

реплікації вірусу SARS-CoV‑2 у пневмоцитоподібних клітинах, 
отриманих з людських індукованих стовбурових плюрипотентних 
клітин (induced pluripotent stem cells – iPSCs) [152; 153].
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4.1.7. Індуктори стресу ендоплазматичного ретикулуму

Ендоплазматичний ретикулум клітини бере участь у під-
тримці протеостазу, забезпечуючи контроль за якістю внутріш-
ньоклітинного пулу протеїнів. У процесі підтримки протеостазу 
беруть участь системи синтезу, протеасомної деградації протеїнів 
та механізми аутофагії. Порушення протеостазу, яке характе-
ризується акумуляцією неправильно фолдованих та пошкод-
жених молекул протеїнів у цитоплазмі клітини, індукує розвиток 
ЕР-стресу. Виникнення ЕР-стресу призводить до підвищення 
експресії генів аутофагії та активації апоптозу, шляхом активації 
кінази 3 еукаріотичного фактору ініціації трансляції 2 α (eukaryotic 
translation initiation factor 2 alpha kinase 3/protein kinase RNA-like 
endoplasmic reticulum kinase – EIF2AK3/PERK), фермента‑1, що 
потребує інозитол (inositol-requiring enzyme‑1 – IRE1), та фак-
тору 6, що активує транскрипцію (activating transcription factor 
6 – ATF6) [154–156].

Під час вірусної інфекції синтезується значна кількість вірус-
них білків, зумовлюючи виникнення надлишку розгорнутих та 
неправильно фондованих протеїнів у ЕР, що своєю чергою викли-
кає ЕР-стрес. Розвиток ЕР-стресу пов’язаний з активацією трьох 
сигнальних шляхів (EIF2AK3, IRE1 та ATF6), що призводить до 
індукції клітинної відповіді на неправильно згорнуті білки (unfolded 
protein response – UPR). Стрес ендоплазматичного ретикулу-
му індукує аутофагію, ксенофагію інфекційних агентів. Однак 
у процесі еволюції багато внутрішньоклітинних мікроорганізмів 
придбали молекулярні механізми, які пригнічують розвиток 
ЕР-стресу [134]. Зокрема, вірусний білок ORF3a, який індукує 
EIF2AK3‑асоційований сигнальний шлях, вважають основним 
фактором, що викликає ЕР-стрес при інфікуванні клітин вірусом 
SARS-CoV‑2, використовує систему убіквітину клітини і знижує 
свою проапоптичну й прозапальну потенцію [157–159]. З огляду 
на те що кіназа EIF2AK3 є ключовим індуктором ЕР-стресу при 
інфікуванні клітин вірусом SARS-CoV‑2, розробка лікарських 
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засобів, спрямованих на її активацію, може стати основою нової 
стратегії терапії COVID‑19 [106].

Прямими індукторами ЕР-стресу є брефельдин, тапсигаргін 
та тунікаміцин (табл 12).

Таблиця 12
Індуктори стресу ендоплазматичного ретикулуму

Препарат Таргетний вірус Механізм дії Ефект Джерело
Прямі індуктори стресу ендоплазматичного ретикулуму
Брефельдін А SARS-CoV‑2 Інгібування реплікації вірусу 

SARS-CoV‑2
Активація 
аутофагії

[160]

Тапсигаргін IAV
SARS-CoV‑2
MERS-CoV

Інгібування реплікації вірусу 
SARS-CoV‑2

Активація 
аутофагії

[161]

Тунікаміцин SARS-CoV‑2 Інгібування реплікації вірусу 
SARS-CoV‑2

Активація 
аутофагії

[162]

Інгібітори 26S-протеасоми
Бортезоміб SARS-CoV‑2 Інгібування реплікації вірусу 

SARS-CoV‑2
Активація 
аутофагії

[163]

4.1.7.1. Прямі індуктори стресу ендоплазматичного 
ретикулуму
4.1.7.1.1. Брефельдін А
Брефельдін А (brefeldin A) – препарат, який належить до 

групи лактонних антибіотиків. Брефельдін А був отриманий 
з анаморфного виду гриба Penicillium brefeldianum, а також ви-
явлений у грибів курвуларія (Curvularia lunata) і в трав’янистій 
рослині анжеліка китайська (Angelica sinensis), або жіночому 
женьшені. Брефельдін А індукує формування непокритих мем-
бранних трубочок, через які молекулярні компоненти Гольджі 
перерозподіляються на ЕР, та порушує везикулярний транспорт 
між апаратом Гольджі та ЕР. Показано, що брефельдін А без-
посередньо взаємодіє з Гольджі брефелдіном A резистентним 
фактором обміну гуанінових нуклеотидів (golgi brefeldin A resistant 
guanine nucleotide exchange factor 1 – GBF1), який рекрутує обо-
лонкові білки COPI білкам. Порушення рекрутингу білків COPI 
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призводить до блокади везикулярного транспорту, розвитку ЕР-
стресу і, як наслідок, до посилення експресії генів, що беруть 
участь в аутофагії [164; 165].

Продемонстровано, що брефельдін А більш ніж на 98 % 
пригнічує реплікацію вірусу SARS-CoV‑2 [104].

4.1.7.1.2. Тапсигаргін
Тапсигаргін (thapsigargin) – це сесквітерпеновий лактон типу 

гваяноліда, виділений з кореня та плодів середземноморської 
квіткової рослини тапсії (Thapsia garganica), що отримала на-
родну назву «Смертельна морква». Встановлено, що тапсигар-
гін пригнічує активність малого трансмембранного регулятора 
іонного транспортера 1 (small transmembrane regulator of ion 
transport 1 – SERCA), що є Ca2+АТФазою саркоплазматичного / 
ендоплазматичного ретикулуму, що індукує розвиток ЕР-стресу. 
Тапсигаргін застосовується при лікуванні мультиформної гліоб-
ластоми, гепатоцелюлярної карциноми, раку передміхурової 
залози, світлоклітинної нирковоклітинної карциноми [166; 167].

Sarah Al-Beltagi та колеги з Ноттінгемського університету 
Сполученого Королівства [125], а також група дослідників під 
керівництвом Джона Цибура (John Ziebuhr), Міхаеля Крахта 
(Michael Kracht) [168] продемонстрували, що тапсигаргін має 
виражену противірусну активність проти оболонкових РНК-
вірусів, таких як коронавірус SARS-CoV‑2, MERS-CoV, RSV 
і IAV. Тапсигаргін продемонстрував противірусну активність, 
яка перевищує таку, що спостерігається у ремдесивіру та ри-
бавірину [125]. У клітинах, інфікованих вірусом після обробки 
тапсигаргіном, спостерігається значне зниження рівня вмісту 
вірусних протеїнів. Вважають, що обмеження вмісту протеїнів 
SARS-CoV‑2 обумовлено тапсигаргін-опосередкованою актива-
цією аутофагії [167; 169].

Md Easin Mia та співавт. [170] вважають, що тапсигаргін є 
перспективним препаратом для лікування хворих з тяжкими 
формами COVID‑19.
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4.1.7.1.3. Тунікаміцин
Тунікаміцин (tunicamycin) є сумішшю натуральних сполук, 

які продукуються грам-позитивними бактеріями Streptomyces 
clavuligerus, Streptomyces lysosuperficus і мають антибактеріальні, 
противірусні та протипухлинні властивості. В основі механіз-
му дії тунікаміцину лежить його здатність, знижуючи актив-
ність N-ацетилглюкозамін‑1‑фосфаттрансферази, інгібувати 
N-глікозилювання деяких глікопротеїнів, таких як: фетуїн, про-
теоглікан 1 рогівки, тиреоглобулін, імуноглобуліни. Інгібуючи 
приєднання гліканів до аспарагінових залишків глікопротеїнів, 
тунікаміцин зумовлює неправильне фолдування протеїнових 
молекул, що індукує розвиток ЕР-стресу [171–173]. Тунікаміцин 
раніше використовувався при лікуванні раку грудей, товстої 
кишки та підшлункової залози людини [174].

Продемонстровано,  що тун ікаміцин пригн ічує 
N-глікозилювання протеїнів вірусу SARS-CoV‑2, таких як E2, S, M, 
знижуючи рівень його вірулентності. Тунікаміцин-опосередковане 
інгібування N-глікозилювання зумовлює відсутність манози в гліка-
нах, пов’язаних з S-глікопротеїном вірусу SARS-CoV‑2, що призво-
дить до появи нових дефектних віріонів, у яких S-глікопротеїн 
не має здатності взаємодіяти з ACE2 [162]. Продемонстровано, 
що тунікаміцин знижує позаклітинне інфекційне вірусне наван-
таження майже на 99 % [175].

Ali Adel Dawood та Mahmood Abduljabar Altobje [162] реко-
мендують використовувати тунікаміцин при лікуванні COVID‑19.

4.1.7.2. Інгібітори 26S-протеасоми
4.1.7.2.1. Бортезоміб
Бортезоміб (bortezomib) є похідним боронової кислоти, що 

опосередковано активує аутофагію шляхом інгібування про-
теасомної активності. У клінічній практиці бортезоміб викори-
стовується для лікування неопластичних (множинної мієломи, 
недрібноклітинної карциноми легень, андроген-незалежної 
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карциноми простати, фолікулярної неходжкінської лімфоми, 
лімфоми з клітин мантійної зони) та аутоімунних захворювань 
[176; 177].

Tai-Wei Li та співавт. [163] встановили, що бортезоміб, взає-
модіючи з неструктурованим білком Nsp14 вірусу SARS-CoV‑2, 
пригнічує активність реплікації вірусу та запальної реакції. 
Неструктурований білок NSP14 має гуанін-N7‑метилтрансферазну 
та 3’-5’ екзорібонуклеазну активність, яка опосередковує висо-
коточну реплікацію [178]. Надекспресія NSP14 пригнічує проду-
кування ендогенних білків IFN-стимульованих генів [179].

Протеїн Nsp14 вірусу SARS-CoV‑2 взаємодіє з інозин‑5’-моно-
фосфатдегідрогеназою 2 (inosine‑5’-monophosphate dehydrogenase 
2 – IMPDH2), яка індукує транслокацію прозапального фактору 
транскрипції NF-κB в ядро клітини. Функціонування фактору 
транскрипції NF-κB викликає підвищення продукування IL‑6 та 
CXCL8/IL‑8 у легеневій тканині хворих з COVID‑19 [163; 180].

4.1.8. Інгібітори протеїну BCL‑2

Представники сімейства протеїнів 2 B-клітинної лімфоми 
(B-Cell Leukemia/Lymphoma 2 – BCL‑2) є регуляторами міто-
хондріально опосередкованого апоптозу клітин, який відіграє 
ключову роль у патогенезі інфекційних захворювань, у тому числі 
викликаних респіраторними вірусами [51]. Сімейство BCL‑2 скла-
дається з антиапоптотичних (BCL‑2, BCL–XL, MCL‑1, BCLW та 
BFL‑1) та проапоптотичних протеїнів. Проапоптотичні протеїни 
представлені групою тридоменних ефекторних білків (BAX, BAK 
і BOK) і групою білків, що містять тільки домен BH3 (BIM, BAD, 
NOXA, PUMA, BID, BIK, HRK) [181; 182]. Протеїн BCL‑2 контролює 
цілісність зовнішньої мітохондріальної мембрани, запобігаючи 
апоптотичній загибелі клітин. Так, ортологи вірусного протеїну 
Bcl‑2 впливають на білки BH3‑only або безпосередньо блокують 
активність проапоптотичних протеїнів BAX та BAK, інгібуючи 
ініціацію процесу апоптозу [183–185].
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Продемонстровано, що BCL‑2 впливає на активність ауто-
фагії шляхом формування гетеродимерних комплексів з клю-
човими аутофагічними протеїнами, такими як Beclin‑1, який є 
ключовим компонентом у формуванні аутофагосом, і білок 3, 
який взаємодіє з BCL‑2 (BCL2 interacting 3 – BNIP3). Молекула 
протеїну Beclin‑1 несе мотив, подібний до BH3, який взаємодіє 
з білками сімейства BCL‑2. Взаємодія протеїну BCL‑2 з Beclin‑1 
і BNIP3 запобігає формуванню мультипротеїнового комплексу, 
що індукує складання аутофагосом [186–188].

Інгібітори протеїну BCL‑2 (венетоклакс, навітоклакс, обато-
клакс, сабутоклакс, ApoG2, TW‑37, YC137) сприяють активації 
протеїнів BAX, BAK, що призводить до індукції апоптозу, аутофагії 
та ксенофагії (табл. 13) [189].

Таблиця 13
Інгібітори протеїну BCL‑2

Препарат Таргетний вірус Механізм дії Ефект Джерело
Венетоклакс SARS-CoV‑2 Інгібування проникнення ві-

русу SARS-CoV‑2 у клітини
Активація 
аутофагії

[22]

Навітоклакс SARS-CoV‑2 Інгібування проникнення ві-
русу SARS-CoV‑2 у клітини

Активація 
аутофагії

[190]

Обатоклакс SARS-CoV‑2
HMPV

Інгібування проникнення ві-
русу у клітини.
Інгібування реплікації вірусу 
SARS-CoV‑2

Активація 
аутофагії

[191; 192]

4.1.8.1. Венетоклакс
Венетоклакс (venetoclax, ABT‑199) є першим впровадженим 

у клінічну практику препаратом із групи високоселективних ін-
гібіторів BCL‑2 [193]. Венетоклакс – це сіркоорганічний лікарський 
засіб, призначений для лікування хронічного лімфоцитарного 
лейкозу. Крім протипухлинної активності, венетоклакс має здат-
ність зв’язуватися з некаталітичною кишенею S-глікопротеїну 
вірусу SARS-CoV‑2, перешкоджаючи проникненню вірусу в клітину 
макроорганізму [194; 195]. Венетоклакс індукує як аутофагію, 
так й апоптотичну загибель клітин [196].
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4.1.8.2. Навітоклакс
Навітоклакс (navitoclax, ABT‑737, ABT‑263) має виражену 

протипухлинну активність. Застосування навітоклаксу проде-
монструвало високу ефективність при лікуванні дрібноклітинного 
раку легень, солідних пухлин, гострого лімфоцитарного лейкозу, 
мієлофіброзу. Навітоклакс індукує аутофагію, апоптоз клітин та 
пригнічує розвиток фіброзу тканин [197–199].

Встановлено, що протираковий препарат навітоклакс ха-
рактеризується наявністю здатності зв’язуватися з консерва-
тивним доменом HR1 субодиниці S2 S-глікопротеїну вірусу 
SARS-CoV‑2 та блокувати утворення шестиспірального ядра 
злиття (six-helix bundle – 6-HB), тим самим ефективно інгібувати 
проникнення вірусу в клітину. Вважають, що навітоклакс може 
бути розглянутий як ефективний та безпечний противірусний 
препарат для лікування COVID‑19 [190].

4.1.8.3. Обатоклакс
Обатоклакс (obatoclax, GX15–070) – інгібітор протеїну BCL‑2, 

який виявляє потужну протипухлинну активність при різних ти-
пах раку та гематологічних злоякісних неоплазіях. Обатоклакс 
індукує апоптоз активацією протеїнів BAX, BAK [200; 201].

Олександр Ianevski та співавт. [202] на підставі резуль-
татів скринінгу 136 противірусних препаратів широкого спектра 
дії встановили, що обатоклакс має достатню активність про-
ти вірусу SARS-CoV‑2, людського метапневмовірусу (human 
metapneumovirus – HMPV). Продемонстровано, що обатоклакс 
пригнічує вірусне ендоцитарне захоплення, впливаючи на клітин-
ний білок диференціювання клітин мієлоїдного лейкозу (myeloid 
leukemia 1 – MCL‑1) та фуринову протеазу. Також обатоклакс 
запобігає проникненню вірусу SARS-CoV‑2 в клітину макроор-
ганізму шляхом блокади ендоцитозу віріонів, знижуючи ендосо-
мальну ацидифікацію та пригнічуючи ферментативну активність 
ендосомальної протеази цистеїну – катепсину L [191]. Крім того, 
обатоклакс інгібує реплікацію вірусів SARS-CoV‑2 у первинних 
людських епітеліальних клітинах носа [192].
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4.2. 	 Модулятори активності завершального 
етапу ксено- і аутофагії

Гострі респіраторні інфекції, викликані пневмотропними 
бактеріями (Streptococcus pneumoniae, Haemophilus influenzae та 
іншими) або вірусами, особливо IAV, SARS-CoV‑2, RSV, HMPV, є 
найпоширенішими захворюваннями. Незважаючи на досягнення 
медицини в розробці антибактеріальних, віроцидних та патоге-
нетичних лікарських засобів для лікування ГРІ, останнім часом 
збільшується ризик розвитку несприятливого перебігу та рівня 
летальності при ГРІ як у дітей, так і у дорослих індивідуумів [1–6].

Одним із найдавніших еволюційних механізмів захисту від 
інфекційних агентів є селективна форма аутофагії – ксенофагія. 
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Аутофагія та ксенофагія відіграють важливу роль у розвитку ГРІ 
шляхом пригнічення вторгнення інфекційного агента в клітину 
та ерадикації патогену за допомогою лізосомальної деградації. 
Активність механізмів ксенофагії зумовлює ризик інфікування 
людини та розвитку несприятливого перебігу інфекційних за-
хворювань, у тому числі і ГРІ. Нині лікування, спрямоване на 
аутофагію, викликає все більший практичний інтерес [7–10].

Завершальний етап аутофагії характеризується злиттям 
двомембранної аутофагосоми і лізосоми, що призводить до фор-
мування аутофаголізосоми, всередині якої лізосомальні гідролази 
деградують аутофагічний вантаж. У регуляції пізнього періоду 
аутофагії беруть участь малі RAB-ГТФази; білки ATG8; факто-
ри гомотипного злиття та сортування білків вакуолі (homotypic 
fusion and vacuole protein sorting – HOPS); рецепторні солютабні 
комплекси солютабного протеїну прикріплення (soluble NSF 
attachment protein – SNARE); моторні протеїни [11; 12]. Деякі 
респіраторні віруси мають здатність втручатися у процес злиття 
аутофагосоми та лізосоми, що призводить до пригнічення ауто-
фагії та підвищення ефективності реплікації вірусного геному. 
Більшість вірусів переривають складання комплексу SNARE, 
знижують експресію генів молекул, що беруть участь у злитті 
аутофагосоми та лізосоми. Зокрема, IAV, використовуючи протеїн 
M2, і вірус SARS-CoV‑2 за допомогою протеїну відкритої рамки 
зчитування 3a (open reading frame 3a – ORF3a) пригнічують злиття 
аутофагосом з лізосомою. Порушення дозрівання аутолізосом 
сприяє реплікації вірусної РНК [11].

На сьогодні розроблено лікарські засоби, які регулюють 
завершальний етап аутофагії та ксенофагії. На біогенез лізосом 
впливають агоністи фактору транскрипції TFEB; а на процес 
формування аутофаголізосоми – лізосомотропні агенти [13; 14]. 
Проте у вітчизняній науковій літературі майже відсутні праці, 
присвячені впливу лікарських засобів на завершальний етап 
аутофагії та ксенофагії при ГРІ.
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4.2.1. Агоністи фактору транскрипції TFEB

Фактор транскрипції TFEB відіграє ключову роль у регуля-
ції лізосомального біогенезу та завершального етапу аутофа-
гії. Субклітинна локалізація та біологічна активність фактору 
транскрипції TFEB регулюються mTORС1‑опосередкованим 
фосфорилюванням молекули TFEB, що відбувається на по-
верхні мембрани лізосом. Фосфорильована молекула фактору 
транскрипції TFEB зберігається в цитоплазмі клітини, тоді як ак-
тивна дефосфорильована молекула фактору транскрипції TFEB 
транслокується в ядро клітини, де індукує транскрипцію цільових 
генів. Таким чином, дефосфорильований фактор транскрипції 
TFEB індукує аутофагію, посилюючи експресію генів, пов’язаних 
з аутофагією та функціональною активністю лізосом [15; 16] 
Фактор транскрипції TFEB координує експресію генів лізосом-
них гідролаз, лізосомних мембранних білків та білків аутофагії, 
а також бере участь у регуляції лізосомального екзоцитозу. 
Крім того, фактор транскрипції TFEB активує білок кальцієвого 
каналу – муколіпін 1 або TRP катіонний канал 1 (mucolipin 1/
TRP cation channel 1 – MCOLN1/TRPML1), що сприяє притоку 
кальцію та злиттю мембрани лізосоми та цитоплазматичної 
мембрани клітини.

Усі агоністи фактору транскрипції TFEB активують механіз-
ми завершального етапу аутофагії та ксенофагії. Розрізняють 
прямі та непрямі агоністи фактору транскрипції TFEB (табл. 14).
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Таблиця 14
Коротка характеристика впливу модуляторів активності 

фактору транскрипції TFEB на аутофагію при ГРІ
Препарат Інфекційний 

агент
Механізм дії Ефект Джерело

Прямі агоністи TFEB
Аналог кур-
куміну – C1

? Сполука C1 специфічно 
зв’язується з фактором 
транскрипції TFEB і спри-
яє його транслокації 
в ядро клітини

Активує ауто-
фагію

[17]

П р о г е с т і н 
R5020

? Сприяє транслокації TFEB 
в ядро клітини

Активує ауто-
фагію

[18]

Ресвератрол IAV
RSV
SARS-CoV‑2
MERS

Cприяє транслокації TFEB 
в ядро клітини, підви-
щує експресію MAPLC31/
LC3-II і знижує експресію 
SQSTM1/p62

Активує аутофа-
гію.
Інгібує репліка-
цію вірусів

[19–21]

Непрямі агоністи TFEB
Фізетин SARS CoV‑2 Cприяє транслокації TFEB 

в ядро клітини
Активує ауто-
фагію. Інгібує 
проникнення 
вірусів у клітину 
шляхом пригні-
чення активності 
TMPRSS2

[22; 23]

Рапаміцин SARS-CoV‑2 Активація TFEB Активація ауто-
фагії

[24]

Інгібітор та активатор фактору TFEB
Моринга А IAV Активатор та інгібітор 

фактору TFEB
Активація та ін-
гібування ауто-
фагії

[25]

4.2.1.1. Прямі агоністи TFEB
4.2.1.1.1. Ресвератрол
Ресвератрол (resveratrol) – це поліфенольна сполука 

3,4′,5‑тригідроксистильбен, яка вперше отримана зі шкірки 
червоного винограду (Vitis vinifera). Цей поліфенол ідентифіко-
ваний у хучжані (Polygonum cuspidatum), журавлині (Vaccinium 
macrocarpon), червоній шовковиці (Mórus rúbra), арахісі. 
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Ресвератрол має найвищий рівень антиоксидантної активності 
серед лікарських антиоксидантів. Також ресвератрол характе-
ризується наявністю протизапальних та протипухлинних вла-
стивостей [26–28].

Ресвератрол безпосередньо активує транскрипційний фактор 
TFEB, який є ключовим молекулярним регулятором аутофагії та 
лізосомального біогенезу. Крім того, ресвератрол індукує протеїн-
фосфатазу 2A (protein phosphatase 2A – PP2A), яка зв’язується 
з фактором TFEB і дефосфорилює його молекулу, викликаючи 
транслокацію TFEB в ядро клітини, що призводить до посилення 
експресії цільових генів, які беруть участь в аутофагії та біогенезі 
лізосом. Зниження активності субодиниць PP2A значно пригнічує 
дефосфорилювання протеїну TFEB [29; 30].

Ресвератрол також пригнічує PI3K/AKT/mTORC1‑асоцій-
ований сигнальний шлях, викликаючи індукцію аутофагії [31].

Відомо, що ресвератрол чинить потужну протизапальну дію, 
пригнічуючи активність факторів транскрипції, таких як ядерний 
фактор каппа B (nuclear factor kappa B – NF-κB), активаторний 
протеїн‑1 (activator protein‑1 – AP‑1), що зумовлює зниження рівня 
експресії генів, які кодують прозапальні цитокіни, інтерлейкіни, 
хемокіни, молекули адгезії [27].

Ресвератрол має виражену противірусну дію проти IAV, RSV, 
HRV, SARS-CoV‑2 та MERS-CoV [26; 32; 33]. Продемонстровано, 
що похідне ресвератролу – транс‑3,4,3’,5’-тетрагідроксистильбен 
або 3’-гідроксиресвератрол – інгібує проникнення в клітину ма-
кроорганізму IAV H1N1 і H3N2, безпосередньо зв’язуючись з субо-
диницею 2 гемаглютиніну вірусу, що блокує злиття мембран IAV 
та клітин макроорганізму [60]. Інший аналог ресвератролу – пте-
ростильбен – ефективно інгібує реплікацію IAV, переважно впли-
ваючи на механізми завершального етапу аутофагії. Водночас 
птеростильбен, взаємодіючи з неструктурованим протеїном NS1 
вірусу грипу, пригнічує аутофагічну деградацію RIG-I-подібних 
рецепторів (retinoic acid-inducible gene-I-like receptors – RLR), 
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що посилює активність IFN-асоційованих сигнальних шляхів. 
Продемонстровано, що збільшення представництва рецепторів 
RLR у цитоплазмі клітин посилює продукування інтерферонів 
І типу і, як наслідок, підвищує активність противірусних механізмів 
[34].

Ресвератрол, взаємодіючи з гепарансульфатпротеогліканами 
мембрани епітеліоцитів, перешкоджає взаємодії гепарансуль-
фатпротеогліканів з поверхневими протеїнами RSV, такими як 
білок злиття (F) та глікопротеїн (G). Блокування гепарансульфат-
протеогліканів пригнічує активність проникнення RSV у клітину 
макроорганізму [35].

Встановлено, що ресвератрол, зв’язуючись із рецепторним 
протеїном ACE2 макроорганізму, пригнічує проникнення і коро-
навірусів у клітини макроорганізму [32; 36].

4.2.1.2. Непрямі агоністи TFEB
4.2.1.2.1. Фізетин
Фізетин (fisetin) – це флавоноїдна сполука (3,3′,4′,7– тетра-

гідроксифлавон), молекула якої складається з двох ароматич-
них кілець, пов’язаних через тривуглецеве кисневмісне гете-
роциклічне кільце. Біологічна активність фізетину обумовлена 
наявністю в молекулі гідроксильних груп в положеннях 3, 7, 3’, 
4’ і оксогрупи в положенні 4 з подвійним зв’язком між C2 і C3. 
Фізетин міститься в різних ягодах, фруктах та овочах, таких як: 
полуниця, яблука, цибуля та огірки, а також у різних деревах 
та чагарниках, що належать до сімейств бобових (Fabaceae) 
та фісташкових (Anacardiaceae), хвойних (Pinóphyta) рослин 
[37–39]. Показано, що фізетин активує процеси завершально-
го етапу аутофагії та виявляє противірусну, протизапальну та 
протипухлинну дію.

Продемонстровано, що фізетин індукує фактор транскрипції 
TFEB та пригнічує активність PI3K/AKT/mTORC1‑асоційованого 
сигнального шляху, що призводить до активації аутофагії [40; 41].
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Як і багато інших флавоноїдів, фізетин виявляє противірус-
ну дію, надаючи пряму віроцидну дію, інгібуючи проникнення 
в клітину та/або пригнічуючи реплікацію геному респіраторних 
вірусів, зокрема IAV, SARS-CoV‑2, RSV (табл. 15) [42; 43].

Таблиця 15
Противірусна активність деяких флавоноїдів

Флавоноїд
Вірус

IAV RSV SARS-CoV‑2
Аментофлавон (amentoflavone) + + +
Байкалейн / байкалін (baicalein/baicalin) + + +
Гесперетин (hesperetin) ? + +
Гесперидин (hesperidin) + ? +
Дельфінідин (delphinidin) ? ? +
Епігалокатехінгалат (epigallocatechin‑3‑gallate) + + +
Ізорамнетин (isorhamnetin) + ? +
Кверцетин (quercetin) + + +
Кемпферол (kaempferol) + ? +
Куркумін (curcumin) + ? +
Лютеолін (luteolin) + + +
Мірицетин (myricetin) + + +
Нарінгенін (naringenin) ? + +
Пуерарин (puerarin) + ? +
Рутин (rutin) + + +
Теазіненсін А (theasinensin A) ? ? +
Теафлавін‑3‑галлат (theaflavin‑3‑gallate) ? ? +
Фізетин (fisetin) ? ? +

Фізетин пригнічує проникнення вірусів SARS-CoV‑2 в клітину 
шляхом інгібування протеази TMPRSS2 [116].

Застосування фізетину викликає пригнічення продукування 
прозапальних молекул, таких як IL‑1β, IL‑6, CXCL8/IL‑8, проду-
кування яких асоційована з активністю Th1‑клітин, IL‑13, IL‑4 та 
IL‑5, пов’язаних з активністю Th2- клітин [44–46].

Останнім часом доведено, що фізетин належить до гру-
пи сенотерапевтичних препаратів та має здатність запобігати 
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старінню. Майже всі сенотерапевтичні препарати сприяють 
підвищенню активності противірусних та протибактеріальних 
механізмів захисту макроорганізму. Серед сенотерапевтичних 
засобів розрізняють сенолітики та сеноморфіки. Сенолітики є 
препаратами, які індукують апоптотичну загибель сенесцентних 
(старіючих) клітин. До сенолітиків належать: фітоінгібітори PI3K/
AKT/mTORC1‑асоційованого сигнального шляху (фізетин, квер-
цетин); інгібітори тирозинкіназ (наприклад, дазатиніб); інгібітори 
протеїнів Bcl‑2 (наприклад, навітоклакс). Сеноморфіками є 
лікарські засоби, які пригнічують продукування факторів, які 
сприяють виникненню секреторного фенотипу, асоційованого зі 
старінням (senescence-associated secretory phenotype – SASP). 
До цієї групи сенотерапевтичних препаратів належать: актива-
тори AMPK (метформін); інгібітори mTORC1 (рапаміцин та його 
рапалоги), протизапальні моноклональні антитіла (анакінра, 
тоцилізумаб) [47–52].

Інфекції, спричинені респіраторними вірусами, такими як 
RSV, SARS-CoV‑2, індукують розвиток старіння, яке фактично 
не відрізняється від інших форм клітинного старіння та супро-
воджується формуванням SASP [53; 54]. Зокрема, у хворих 
під час COVID‑19 були виявлені маркери фенотипу старіння 
у слизовій оболонці дихальних шляхів in situ та підвищені рівні 
факторів SASP у сироватці крові, таких як: прозапальні моле-
кули; протеїни, що руйнують позаклітинний матрикс; актива-
тори комплементу та прокоагуляційні фактори, які удосталь 
секретуються старіючими (сенесцентними) клітинами [49; 55]. 
Своєю чергою фактори SASP у хворих на COVID‑19 сприяють 
розвитку «цитокінового шторму», інфільтрації легеневої тканини 
імунними клітинами, деструкції легеневої тканини, виникненням 
ендотеліїту, фіброзу та мікротромбозу. Тому у людей похилого 
віку COVID‑19 асоційований з високим ризиком несприятливого 
перебігу та летального результату. Вважають, що застосування 
сенолітиків, зокрема фізетину, які сприяють зниженню представ-
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ництва сенесцентних клітин, є новим терапевтичним напрямом 
лікування осіб сенільного віку, хворих на COVID‑19 [55].

На сьогодні проводиться кілька клінічних випробувань 
(NCT04771611, NCT04537299, NCT04476953), метою яких є 
визначення ефективності терапії фізетином хворих на COVID‑19 
[50].

Проте Adrian Luna та співавт. [56] не підтвердили того факту, 
що сенолітичні агенти знижують рівень маркерів старіння при 
респіраторних вірусних інфекціях.

4.2.1.2.2. Моринга А
Моринга А (moringa A) була виявлена в насінні рослини 

моринги олійної (Moringa oleifera), що росте в тропічних регіонах 
[57; 58].

З’єднання моринга А пригнічує реплікацію IAV у клітинах ма-
кроорганізму та захищає інфіковані клітини від вірус-індукованого 
цитопатичного ефекту. Продемонстровано, що моринга А до-
ставляється в інфіковані клітини екзосомами, які генеруються 
M2‑макрофагами. Молекули моринги А, які інкапсульовані в ек-
зосоми, по досягненню інфікованих таргетних клітин макроор-
ганізму активують в них лізосомальний TFEB-залежний шлях 
ксенофагії, що зумовлює деградацію IAV [25]. Водночас показано, 
що моринга А може інгібувати експресію та ядерну транслокацію 
фактору транскрипції TFEB і, як наслідок, пригнічувати активність 
аутофагії в інфікованих клітинах [59; 60].

Крім того, моринга A має суттєвий протизапальний вплив. 
Вона знижує рівень продукування прозапальних інтерлейкінів, 
інтерферонів та цитокінів (IL‑1β, IL‑6, IFN–β, TNF-α) інфіковани-
ми вірусами IAV H1N1 клітинами RAW264.7 – макрофагами, які 
були виділені з мишачої пухлини, викликаної вірусом [59; 60].
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4.2.2. Лізосомотропні агенти

Вперше термін «лізосомотропні агенти» запропонував май-
бутній лауреат Нобелівської премії бельгійський біохімік Крістіан 
Рене де Дюв (Christian René de Duve) з колегами у 1974 році [61]. 
Лізосомотропні агенти є групою лікарських засобів, які харак-
теризуються вираженою лізосомотропністю. Всі лізосомотропні 
агенти є гідрофобними сполуками і слабкими органічними осно-
вами (pKa >6), що дозволяє їм цілеспрямовано накопичуватися 
в кислому середовищі лізосом і впливати на функціональний стан 
лізосоми. Накопичення лізосомотропних сполук у просвіті лізосом 
призводить до підвищення рівня лізосомального pH з 4,5–5 до 
6–6,5, а зниження ацидифікації вмісту лізосомального люмена 
інактивує більшість лізосомальних ферментів. Підлужування 
люмена лізосоми особливо характерне для хлорохіна та гідрок-
сихлорохіна. Препарати цієї групи модулюють ефективність 
аутофагії за допомогою модуляції злиття амфісоми з лізосомою. 
Більшість лізосомотропних агентів пригнічує активність реплікації 
геному вірусів за допомогою підлужування кислого середовища 
в ендолізосомальній системі [62; 63].

До групи лізосомотропних агентів належать: антагоністи дво-
порових каналів (нарингенін, тетрандрин), інгібітори гем-поліме-
рази (хлорохін, гідроксихлорохін, езурпімтростат), інгібітори 
тирозинкіназ, макроліди (азитроміцин, бафіломіцин A1, клари-
троміцин, еритроміцин), похідні артемізиніна (артесунат) [62–66].

Також лізосомотропними агентами є: трициклічні антидепре-
санти (амітриптилін, дезіпрамін, доксепін, іміпрамін, мапротилін, 
нортриптилін, протриптилін, триміпрамін); селективні інгібітори 
зворотного захоплення серотоніну (норфлуоксетин, пароксетин, 
сетралін, флуоксетин); антипсихотики (левомепромазин, прома-
зин, прометазин, фенотіазини, хлорпромазин); нейролептики 
(перазин, тіоридазин, трифлупромазин, хлорпротиксен); бло-
катори кальцієвих каналів (амлодипін; беприділ; фендилін); 
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антигістамінні препарати (астемізол, терфенадін, ципрогептадин, 
піметиксен); антихолінергічні препарати (бензатропін) [67; 68].

4.2.2.1. Антагоністи двопорових каналів
Двопорові канали (two-pore channels – TPC) – це катіонні 

канали, які розташовуються на мембранах ендолізосомаль-
них компартментів і беруть участь у різних патофізіологічних 
процесах, включаючи обмін речовин, аутофагію, зростання та 
розвиток клітин. Функціонування TPC визначає злиття ендосом 
та лізосом, а також контролює флуктуацію рівня pH у лізосомах. 
Показано, що значне збільшення експресії генів TPC1 та TPC2 
супроводжується посиленням активності аутофагії, що прояв-
ляється підвищенням вмісту MAP1LC3/LC3-II та зниженням 
рівня селективного аутофагічного рецептора секвестосоми 1 – 
SQSTM1/p62 [69–73]. Двопорові канали клітин макроорганізму 
беруть участь у життєдіяльності вірусів, включаючи SARS-CoV‑2. 
Майже всі оболонкові віруси, у тому числі і SARS-CoV‑2, викори-
стовують механізми ендоцитозу при проникненні в епітеліальні 
клітини легень макроорганізму. Показано, що TPC беруть участь 
у проникненні SARS-CoV‑2 у клітини, які експресують ACE2 [69; 
74]. Антагоністи TPC пригнічують як проникнення оболонкових 
вірусів у клітину макроорганізму, так і активність реплікації гено-
му вірусів [75]. Цікаво, що деякі антагоністи кальцієвих каналів, 
наприклад: амлодипін, ніфедипін, і верапаміл – блокують TPC 
і сприяють одужанню хворих при респіраторних вірусних захво-
рюваннях [76; 77].

Коротка характеристика основних антагоністів двопорових 
каналів, які впливають на аутофагію протягом гострих респіра-
торних вірусних інфекцій, наведена в табл. 16.



4.2. Модулятори активності завершального етапу ксено- і аутофагії	  | 157 

Таблиця 16
Коротка характеристика впливу антагоністів двопорових 

каналів на аутофагію при ГРІ
Препарат Інфекційний агент Механізм дії Ефект Джерело

Нарингенін SARS-CoV‑2 Інгібування TPC Інгібування аутофагії [78]
Тетрандрин SARS-CoV‑2 Інгібування TPC Активація аутофагії [79]

4.2.2.1.1. Нарингенін
Нарингенін (4’,5,7‑тригідроксифлавонон, naringenin) – є 

флавоноїдом, який присутній у цитрусових і томатах. Вважають, 
що нарингенін надає цитрусовим і помідорам смаку гіркоти. 
Нарингенін має противірусну, імуномодулюючу, протизапальну, 
антиоксидантну та протиракову дію [80].

Показано, що нарингенін пригнічує механізми пізніх стадій 
аутофагії, проте має виражений противірусний вплив. Нарингенін, 
прикріплюючись до рецепторного протеїну ACE2, пригнічує про-
никнення вірусів SARS-CoV‑2 у клітини макроорганізму. Також 
нарингенін, прикріплюючись до вірусних протеїнів SARS-CoV‑2, 
таких як: макродоменна РНК-полімераза (NSP3), РНК-залежна 
РНК-полімераза (NSP12) та 3‑хімотрипсин-подібна серинова 
протеаза, перешкоджає ефективній реплікації геному вірусу 
[81; 82].

Нарингенін має виражений протизапальний вплив. Так, про-
демонстровано, що нарингенін пригнічує активність прозапальних 
M1‑макрофагів, інгібує диференціювання наївних Т-лімфоцитів 
у Th1- та Th17‑клітини, знижує рівень продукування прозапальних 
цитокінів, інтерлейкінів (TNF-α, IL‑1β, IL‑6) та хемокінів (CXCL8/
IL‑8) [71; 83; 82].

Nicola Clementi та співавт. [84] вважають, що нарингенін є 
безпечним та ефективним лікарським засобом для лікування 
хворих на COVID‑19. На сьогодні проводяться клінічні випробу-
вання для оцінювання ефективності терапії нарингеніном хворих 
на COVID‑19 (NCT04308317) [78].
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4.2.2.1.2. Тетрандрин
Тетрандрин (tetrandrine, C38H42N2O6) – це біс-бензилізохі-

ноліновий алкалоїд, що має здатність блокувати TPC. Тетрандрин 
є основним алкалоїдом кореня дводольної рослини стефанії 
чотиритичинкової (Stephania tetrandra S. Moore) сімейства 
Menispermaceae [79]. Тетрандрин, блокуючи TPC2, пригнічує 
вивільнення геному SARS-CoV‑2 з ендолізосомальної системи 
[85]. Також тетрандрин має явну протифіброзну дію шляхом ін-
гібування диференціювання та колонізації фіброзних клітин [86].

Згідно з результатами аналізу вестерн-блот, тетрандрин одно-
часно пригнічує експресію комплексу mTORC1, протеїну Bcl‑2 та 
посилює експресію генів, що кодують протеїни BECLIN‑1 та 
ATG7. Крім того, тетрандрин індукує формування аутофагосом, 
підвищує експресію MAP1LC3/LC3 та сприяє збільшенню зв’я-
зування селективного аутофагічного рецептора SQSTM1/p62 
з промотором гена фактору транскрипції NFE2L2 (NFE2 як bZIP 
transcription factor 2). Вважають, що тетрандрин індукує аутофа-
гію, що супроводжується цитопротекторними ефектами [87; 88].

Shiyin Chen та співавт. [89] вважають, що призначення те-
трандрину підвищує ефективність терапії хворих на COVID‑19, 
а сам тетрандрин є перспективним природним противірусним 
засобом лікування COVID‑19.

4.2.2.2. Інгібітори гем-полімерази
4.2.2.2.1. Хлорохін та гідроксихлорохін
Хлорохін (chloroquine – CQ) і   г ідроксихлорохін 

(hydroxychloroquine – HCQ) є 4‑амінохінолінами, які мають про-
тималярійну, противірусну, протизапальну та протипухлинну 
активність. Фактично CQ/HCQ є єдиними інгібіторами аутофагії, 
які використовуються в клінічних умовах [90].

Обидва препарати викликають: 1) підлужування лізосом та 
ендосом; що запобігає злиттю лізосом з аутофагосомами в про-
цесі аутофагії; 2) інгібування активності амфотерину – протеїну 
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групи високої мобільності бокс 1 (high-mobility group box 1 – 
HMGB1) та NETоза, перешкоджаючи процесу запалення; 3) зни-
ження експресії хемокінового рецептора C–X-C типу 4 (C–X-C 
chemokine receptor type 4 – CXCR4), що пригнічує онкогенез; 
4) зміну внутрішньоклітинної концентрації іонів кальцію; 5) приду-
шення механізмів тромбоутворення [91]. Продемонстровано, що 
CQ, HCQ акумулюються в клітинній ендолізосомальній мережі, 
сприяють підлуженню кислого середовища в ендолізосомальній 
системі та блокують злиття амфісоми і лізосоми, тим самим зни-
жують ефективність не тільки аутофагії, але і вивільнення нових 
віріонів. Призначення CQ, HCQ сприяють зниженню вірусного 
навантаження при інфікуванні SARS-CoV‑2 та IAV [13; 92].

Згідно з даними багатоцентрових досліджень призначення 
CQ або HCQ підвищує виживання хворих із COVID‑19 [93; 94]. 
Натомість Eli S. Rosenberg та співавт. [95] показали, що ліку-
вання HCQ/азитроміцином або обома препаратами одночасно 
не впливало на ймовірність летального результату COVID‑19. 
У 2020 році FDA США відкликало свій дозвіл на екстрене вико-
ристання CQ/HCQ у хворих на COVID‑19 [https://www.fda.gov/
news-events/press-announcements/coronavirus-covid‑19‑update-
fda-revokes-emergency-use-authorization-chloroquine-and].

4.2.2.3. Інгібітори тирозинкіназ
Сімейство тирозинкіназ являє собою групу протеїнів, що 

здійснює перенесення фосфатної групи з молекули АТФ на 
тирозинові залишки таргетних протеїнів, які беруть участь у ре-
гуляції росту, диференціювання, загибелі клітин та процесу 
аутофагії. Серед групи інгібіторів тирозинкінази розрізняють: 
1) АТФ-конкурентні інгібітори тирозинкінази, які конкурують із 
внутрішньоклітинним АТФ за фосфорилювання каталітичного 
сайту тирозинкіназ (гефітиніб, пазопаніб, руксолітиніб та ван-
детаніб); 2) не-АТФ-конкурентні інгібітори тирозинкінази, які 
індукують зміни конформації молекули тирозинкінази (іматиніб, 
сорафеніб, аксітиніб, нілотиніб). Певні представники не-АТФ-
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конкурентних тирозинкіназних інгібіторів мають переважний 
вплив на рецепторні тирозинкінази, такі як кіназа анапластичної 
лімфоми (anaplastic lymphoma kinase – ALK), мітоген-активована 
протеїнкіназа (mitogeninase tropomyosin receptor kinase – TRK), 
тирозинкіназа Брутона (Bruton’s tyrosine kinase – BTK), тиро-
зинкіназа рецептора судинного ендотеліального фактору росту 
(vascular endothelial growth factor receptor – VEGFR), тирозинкіна-
за рецептора епідермального фактору росту (epidermal growth 
factor receptors – EGFR); янус кіназа (Janus kinase – JAK), кіназа 
BCR-ABL (кіназа Абельсона) [96–99].

Продемонстровано, що в регуляції макроаутофагії беруть 
участь рецепторні тирозинкінази, а їх медикаментозне інгібу-
вання активує аутофагію та ксенофагію внутрішньоклітинних 
інфекційних агентів (табл. 17) [100; 101].

Таблиця 17
Коротка характеристика впливу інгібіторів тирозинкіназ  

на аутофагію при ГРІ
Інгібітори 

тирозинкіназ Інфекційний агент Ефект Джерело

Інгібітори ALK
Кризотиніб SARS-CoV‑2 Зниження вірусного наванта-

ження, цитопротекція
[102]

Лорлатиніб SARS-CoV‑2 Цитопротекція [103]
Інгібітори тирозинкінази BCR–ABL

Босутиніб SARS-CoV‑2, бактерії Зниження бактеріального та 
вірусного навантаження, ци-
топротекція

[104; 105]

Дазатиніб SARS-CoV‑2, MERS-
CoV

Інгібування реплікації вірусів, 
цитопротекція

[106; 107]

Іматиніб SARS-CoV‑2, MERS-
CoV

Інгібування реплікації вірусів, 
цитопротекція

[106]

Інгібітори BTK
Акалабрутиніб SARS-CoV‑2 Інгібування реплікації вірусів [108]

Занубрутиніб SARS-CoV‑2 Інгібування запального процесу, 
цитопротекція

[109]
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Інгібітори 
тирозинкіназ Інфекційний агент Ефект Джерело

Ібрутиніб IAV, SARS-CoV‑2
Streptococcus 
pneumoniae
Klebsiella pneumoniae

Інгібування запального процесу, 
цитопротекція

[110]

Інгібітори тирозинкінази рецептора судинного ендотеліального фактору росту
Вандетаніб SARS-CoV‑2 Інгібування запального процесу, 

цитопротекція
[111]

Регорафеніб SARS-CoV‑2 Інгібування запального процесу, 
цитопротекція

[112]

Крім того, деякі інгібітори тирозинкіназ, такі як: босутиніб, 
дакомітиніб, кризотиніб та олмутиніб – селективно інгібують 
папаїн-подібну пептидазу, яка необхідна для реплікації коро-
навірусів [102].

4.2.2.3.1. Інгібітори ALK
На сьогодні FDA США схвалено для клінічного використання 

п’ять інгібіторів ALK, які становлять три генерації препаратів: 
першого покоління – кризотиніб; другого покоління – церитиніб, 
алектиніб, бригатиніб; третього покоління – лорлатиніб [113]. 
Інактивація ALK супроводжується індукцією аутофагії. Відомо, 
що ALK, який діє як трофічний фактор, активує mTORC1, ви-
користовуючи як MEK/ERK-, так і PI3K/AKT-асоційовані шля-
хи. Враховуючи, що інгібування ALK призводить до інактивації 
mTORC1‑асоційованого сигнального шляху, інгібітори ALK мають 
значний проаутофагічний потенціал [114]. Інгібітори ALK значно 
знижують рівень кліренсу патогенних бактерій, зокрема бактерій 
Streptococcus pneumoniae, пригнічують формування та збуд-
ження NLRP3‑інфламасоми і, як наслідок, обмежують ступінь 
вивільнення функціонально активної форми прозапального 
IL‑1β. У зв’язку з чим інгібітори ALK можуть бути рекомендовані 
при лікуванні станів, що супроводжуються надвисоким рівнем 
запальної реакції. Розвиток інтерстиціальної пневмонії є рідкіс-

Закінчення табл. 17
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ним, але серйозним небажаним явищем у хворих, які отримують 
інгібітори ALK [115; 116].

4.2.2.3.1.1. Кризотиніб
Кризотиніб (crizotinib) – інгібітор тирозинкінази ALK, який схва-

лений FDA для лікування ALK-позитивного або ROS1‑позитивного 
недрібноклітинного раку легень, рефрактерних запальних ALK-
позитивних міофібробластичних пухлин та рецидивуючої / реф-
рактерної ALK-позитивної анапластичної великоклітинної лім-
фоми [117].

Продемонстровано пряму противірусну інгібуючу дію кри-
зотинібу на реплікацію вірусів SARS-CoV‑2 шляхом пригнічення 
активності папаїн-подібної пептидази. Кризотиніб знижує фос-
форилювання AKT, mTORС1, що сприяє підвищенню активності 
аутофагії та апоптозу клітин [102; 118; 119].

4.2.2.3.1.2. Лорлатиніб
Лорлатиніб (lorlatinib) – потужний високоселективний інгібітор 

ALK третього покоління, який був розроблений для лікування 
ALK-позитивного недрібноклітинного раку легень [120; 121]. 
Лорлатиніб індукує механізми протекторної аутофагії та апоп-
тозу клітин [122].

Показано, що поєднане застосування противірусного пре-
парату фавіпіравіру та інгібітору тирозинкінази ABL лорлатині-
бу у хворих з недрібноклітинною аденокарциномою легені та 
з легким перебігом COVID‑19 сприяло одужанню від вірусної 
інфекції [103].

4.2.2.3.2. Інгібітори тирозинкінази BCR–ABL
До групи інгібіторів тирозинкінази BCR–ABL належать бо-

зутиніб, дазатиніб, іматиніб, нілотиніб, понатиніб [123].
Інгібітори тирозинкінази BCR–ABL (бозутиніб, дазатиніб, 

іматиніб) індукують аутофагічні механізми та пригнічують ре-
плікацію коронавірусів [124; 125].
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4.2.2.3.2.1. Босутиніб
Босутиніб (bosutinib) – інгібітор тирозинкінази BCR-ABL 

для перорального застосування при лікуванні хворих з уперше 
діагностованою хронічною філадельфійською хромосомно-
позитивною (Ph+) мієлоїдною лейкемією [126; 127].

Встановлено, що бозутиніб сприяє кілінгу бактеріальних 
інфекційних агентів та пригнічує реплікацію деяких респіратор-
них вірусів.

Продемонстровано, що бозутиніб стимулює мишачі та люд-
ські макрофаги для здійснення ефективного кілінгу бактерій. 
Вважають, що бозутиніб посилює експресію маркерів поглинання 
бактерій DECTIN‑1 та CD14, стимулює ксенофагію, генерацію 
активних кисневмісних метаболітів. Одноразове внутрішньо-
черевне введення або кілька місцевих аплікацій бозутинібом 
на рану експериментальних тварин знижують бактеріальне 
навантаження приблизно в 10 разів [105].

Бозутиніб має виражений інгібуючий вплив на репліка-
цію SARS-CoV‑2 [107]. Застосування босутинібу при лікуванні 
COVID‑19 асоційовано зі зниженням ризику несприятливого пе-
ребігу захворювання та ймовірності госпіталізації хворого [104].

4.2.2.3.2.2. Дазатиніб
Дазатиніб (dasatinib) – інгібітор тирозинкінази BCR-ABL дру-

гого покоління, рекомендований для призначення при різноманіт-
них формах лейкозів та неоплазми. Дазатиніб за ефективністю 
перевищує іматиніб більш ніж у 300 разів [128].

Встановлено, що дазатиніб індукує аутофагію шляхом су-
пресії PI3K/Akt/mTORC1‑асоційованого сигнального шляху [129].

Дазатиніб має інгібуючу дію на реплікацію коронавірусів, 
підтверджуючи високу значущість внутрішньоклітинного сиг-
нального шляху, асоційованого з тирозинкіназою BCR-ABL, 
у життєвому циклі цих вірусних агентів. Встановлено, що інгібітори 
тирозинкінази BCR-ABL ефективно пригнічують процес злиття 
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вірусів SARS-CoV та MERS-CoV з клітинами макроорганізму 
[130; 106; 107].

4.2.2.3.2.3. Іматиніб
Іматиніб (imatinib) – селективний інгібітор тирозинкінази 

BCR–ABL рецепторів тромбоцитарного фактору зростання – був 
розроблений у 2001 році. Препарат іматиніб схвалений для ліку-
вання хронічного мієлоїдного лейкозу та гастроінтестинальної 
стромальної пухлини [131; 132].

Іматиніб, як і дазатиніб, пригнічує реплікацію коронавірусів, 
пригнічуючи процес злиття вірусів з клітиною макроорганізму 
[107]. Відомо, що проникнення в клітини макроорганізму та ре-
плікація геному SARS-CoV‑2 залежить від активності кінази 
ABL2. Так, продемонстровано, що іматиніб блокує проникнення 
SARS-CoV‑2 у легеневі та товстокишкові органоїди, отримані 
з людських плюрипотентних стовбурових клітин [133]. Однак 
іматиніб не проявляє противірусну активність у бронхіально-
му епітелії дихальних шляхів людини та не знижує активність 
реплікації геному SARS-CoV‑2 у тканині легень. Franck Touret 
та співавт. [175] вважають, що використання іматинібу як про-
тивірусного препарату для лікування COVID‑19 вимагає більш 
ретельного дослідження.

На сьогодні проводяться чотири клінічні дослідження 
(NCT04394416, NCT04422678, NCT04346147 та NCT04357613) 
для оцінювання ефективності терапії іматинібом хворих на 
COVID‑19 [14; 134–137].

4.2.2.3.3. Інгібітори BTK
До групи інгібіторів BTK належать акалабрутиніб, бранебру-

тиніб, дазатиніб, евобрутиніб, занубрутиніб, ібрутиніб, інозитолу 
1,3,4,5‑тетракісфосфат, піртобрутиніб, спебрутиніб, матиніб та 
XL418 [109; 123; 138].

Вважають, що тирозинкіназа Брутона відіграє ключову роль 
у підтримці нейтрофільного захисту від бактерій Streptococcus 
pneumoniae та Klebsiella pneumoniae [139; 140].



4.2. Модулятори активності завершального етапу ксено- і аутофагії	  | 165 

Вирішальне значення у саногенезі інфекцій має експресія 
BTK у нейтрофілах, але не у B-клітинах. Дефіцит тирозинкінази 
BTK супроводжується збільшенням навантаження легеневої 
тканини бактеріями Klebsiella pneumoniae приблизно в 100 разів. 
Водночас ібрутиніб пригнічує запалення паренхіми легень, яке 
спричинене бактеріями Streptococcus pneumoniae або Klebsiella 
pneumoniae, в експериментальних тварин [87; 140; 141].

Експериментальні дані свідчать про те, що BTK бере участь 
у розвитку інфекційного вірус-асоційованого процесу та в циклі 
життєдіяльності вірусів IAV, SARS-CoV‑2, а також в ініціації запа-
лення легеневої тканини. Показано, що TLR макрофагів розпізна-
ють патоген-асоційовані патерни вірусів SARS-CoV‑2 і ініцію-
ють BTK-залежну активацію NF-κB-асоційованого сигнального 
шляху, індукуючи запалення інфікованих тканин. Пригнічення 
активності BTK призводить до зниження ступеня запального 
процесу. Порівняння ефективності дії інгібіторів BTK на основі 
результатів обчислювальних досліджень показало, що занубру-
тиніб та ібрутиніб мають найвищу розрахункову противірусну 
активність [109; 142; 143].

Інгібування активності BTK мінімізує прояви вірус-
асоційованих морфологічних змін респіраторного тракту, збільшує 
виживання експериментальних тварин при летальних формах 
інфекції, спричинених IAV, та запобігає втраті маси тіла під час 
інфекційного процесу [144].

Інгібування BTK супроводжується зниженням рівня ушкод-
ження тканин легень у хворих із тяжкою формою COVID‑19 [145].

Необхідно зазначити, що призначення акалабрутинібу та 
ібрутинібу сприяє скороченню тривалості штучної вентиляції 
легень та зниженню ймовірності летального результату у го-
спіталізованих хворих з тяжкою формою COVID‑19 [146].

4.2.2.3.3.1. Акалабрутиніб
Акалабрутиніб (acalabrutinib) – високоселективний інгібітор 

тирозинкінази Брутона другого покоління, який рекомендований 
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для лікування хворих з різними гематологічними захворюван-
нями, мантійноклітинною лімфомою, злоякісними солідними 
новоутвореннями [147–149].

Застосування акалабрутинібу при лікуванні хворих на 
COVID‑19 запобігає тяжкому ураженню тканини легень [145].

Зараз проводиться чотири клінічні дослідження 
(NCT04647669, NCT04346199, NCT04380688 та NCT04564040), 
метою яких є оцінювання ефективності терапії акалабрутинібом 
хворих на COVID‑19 [108].

4.2.2.3.3.2. Занубрутиніб
Занубрутиніб (zanubrutinib) – незворотний інгібітор тиро-

зинкінази Брутона другого покоління, розроблений для лікування 
злоякісних В-клітинних новоутворень [150].

Продемонстровано, що занубрутиніб індукує аутофагію 
через пригнічення активності кінази mTORC1 [151].

Занубрутиніб виявляє значну противірусну активність проти 
SARS-CoV‑2. За даними Satyavani Kaliamurthi та співавторів [109], 
ібрутиніб і занубрутиніб діють через різні механізми, пригнічуючи 
проникнення та реплікацію вірусу SARS-CoV‑2. Застосування 
занубрутинібу сприяє швидкому зменшенню клінічних проявів 
захворювання та зниженню рівня прозапальних цитокінів у си-
роватці крові у пацієнтів із COVID‑19 [109].

4.2.2.3.3.3. Ібрутиніб
Ібрутиніб (Ibrutinib) – інгібітор тирозинкінази Брутона, який ре-

комендований для лікування хворих зі злоякісними В-клітинними 
новоутвореннями, дорослих з хронічною реакцією «трансплантат 
проти господаря» та хворих з хронічними запальними й аутоі-
мунними захворюваннями [152–155].

Призначення ібрутинібу пригнічує активність запального 
процесу, що асоціюється з бактеріальною інвазією [1404 141; 
156]. Також продемонстрована висока ефективність терапії 
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ібрутинібом при лікуванні COVID‑19, що перебігає з цитокіновим 
штормом [157].

Для оцінювання ефективності терапії ібрутинібом хворих на 
COVID‑19 проводяться два клінічні дослідження (NCT04375397, 
NCT04439006) [108].

4.2.2.3.4. Інгібітори тирозинкінази рецептора 
судинного ендотеліального фактору росту
Інгібітори тирозинкінази рецептора судинного ендотеліаль-

ного фактору росту представлені такими лікарськими засобами, 
як регорафеніб, сорафеніб, тівозаніб, вандетаніб, нінтеданіб, 
пегаптиніб, аксітиніб, кабозантиніб, ленватиніб, пазопаніб [158]. 
Продемонстровано, що фактор VEGF відіграє істотну роль у ро-
звитку запалення при респіраторній інфекції, викликаній SARS-
CoV‑2. Підвищення рівня продукування фактору VEGF, яке 
спостерігається у хворих на COVID‑19, асоційоване з високим 
ризиком розвитку набряку легень. Інгібування активності VEGF-
VEGFR-осі значно полегшує перебіг COVID‑19 [111; 159; 160].

4.2.2.3.4.1. Вандетаніб
Показано, що вандетаніб ефективно блокує розвиток ци-

токінового шторму під час COVID‑19. Відповідно до результатів 
досліджень Ana C Puhl та співавт. [161; 162] застосування ван-
детанібу у експериментальних мишей з інфекцією, викликаною 
SARS-CoV‑2, сприяє зменшенню концентрації прозапальних 
цитокінів IL‑6, IL‑10, TNF-α та хемокінів CCL2, CCL3 і CCL4 
в інфікованій тканині легень, але не призводить до зниження 
вірусного навантаження. Водночас Hye Jin Shin та співавт. [163] 
продемонстрували, що вандетаніб має виражену противірусну 
активність проти SARS-CoV‑2. Вандетаніб знижує ефективність 
поширення вірусів SARS-CoV‑2 у легеневій тканині та знижує 
ступінь активності SARS-CoV‑2‑опосередкованого запалення 
легень у експериментальних тварин.
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4.2.2.3.4.2. Регорафеніб
Регорафеніб (regorafenib) – багатоцільовий інгібітор тиро-

зинкіназ. Він являє собою похідне сорафенібу, яке впливає на 
тирозинкінази, пов’язані з ангіогенезом (VEGFR 1–3), онкогенезом 
(KIT, RET, RAF1, BRAF, BRAFV600E) та підтримкою мікросе-
редовища пухлини (PDGFRA, PDGFRB та FG). Цей препарат 
схвалений для терапії метастатичного колоректального раку та 
гепатоцелюлярної карциноми [164–166].

Регорафеніб безпосередньо стабілізує фосфосеринамі-
нотрансферазу 1 (phosphoserine aminotransferase 1 – PSAT1), що 
призводить до активації AMPK, яка ініціює аутофагію та інгібує 
RAB11A-опосередковане злиття аутофагосом та лізосом [167].

Враховуючи результати інтерпретації моделей ризику, отри-
маних на основі машинного навчання, Thomas Linden та співавт. 
[112] пропонують розглядати регорафеніб як потенційний лікар-
ський засіб для лікування COVID‑19.

4.2.2.4. Макролідні антибіотики
Макролідні антибіотики – азитроміцин, бафіломіцин A1, 

кларитроміцин, еритроміцин – пригнічують механізми макроа-
утофагії (табл. 18).

Таблиця 18
Коротка характеристика впливу макролідних антибіотиків  

на аутофагію при ГРІ
Препарат Інфекційний агент Механізм дії Ефект Джерело

Азитроміцин IAV, SARS-CoV‑2 Зв’язується із субоди-
ницею S50 бактеріаль-
ної рибосоми

Інгібування 
аутофагії

[168]

Бафіломіцин 
А1

IAV, SARS-CoV‑2, 
вірус імунодефіци-
ту людини типу 1

Зв’язується із субоди-
ницею S50 бактеріаль-
ної рибосоми

Інгібування 
аутофагії

[169]

4.2.2.4.1. Азитроміцин
Азитроміцин (9‑дезоксо‑9a-метил‑9a-аза‑9a-гомоеритромі-

цин A, C38H72N2O12, azithromycin) – це макролідний антибіотик 
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другого покоління з 16‑членним лактонним кільцем, який має 
бактеріостатичну дію, S‑3. Азитроміцин пригнічує синтез про-
теїнів бактерій, запобігаючи рекрутингу аміноацил-тРНК до бак-
теріальної рибосоми [170]. Крім антибактеріальної активності, 
азитроміцин має досить виражені противірусні властивості, 
пригнічуючи реплікацію геному різних вірусів, включаючи HRV, 
IAV, у тому числі вірус грипу H1N1, α- і β-коронавіруси, енте-
ровіруси, еболавіруси, віруси Зіка [171–173;]. Азітроміцин також 
має протизапальні властивості. Терапія азитроміцином викликає 
пригнічення активності: 1) факторів транскрипції (NF-κB і AP‑1); 
2) інфламасом; 3) продукування прозапальних цитокінів та ін-
терлейкінів (TNF-α, IL‑1α, IL‑2, IL‑12p40), хемокінів (CXCL8) та 
перфорину [174–177].

Встановлено, що лікування азитроміцином у середньо-
терапевтичних дозах супроводжується збільшенням кількості 
аутофагосом у макрофагах. Однак збільшення представництва 
аутофагосом обумовлено азитроміцин-опосередкованим приг-
ніченням лізосомального закислення, що призводить до приг-
нічення активності кліренсу аутофагосом. Підвищення рівня рН 
у лізосомальном просторі перешкоджає активності лізосомальних 
гідролітичних ферментів. Також азитроміцин безпосередньо 
взаємодіє з кератином‑18 та α/β-тубуліном, що спричиняє пору-
шення внутрішньоклітинного транспорту лізосом [176; 178; 179].

Інгібування аутофагії азитроміцином пов’язане з убіквітину-
ванням НАДФН-оксидази 4 (NADPH oxidase 4 – NOX4) шляхом 
підвищення активності E3 убіквітинлігази, такий як протеїн 1, 
який містить гомолог STIP1 і U-box (STIP1 homology and U-box 
containing protein 1 – STUB1). Зниження рівня активності аутофагії 
сприяє саногенезу COVID‑19 та пригнічує активність механізмів 
інтерстиціального легеневого фіброзу [180; 181].

Ali Danish Khan Yousafzai та співавт. [182], враховуючи недо-
статню клінічну ефективність терапії азитроміцином хворих на 
COVID‑19 та наявність загрози розвитку антибактеріальної ре-
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зистентності, рекомендують азитроміцин виключити з протоколів 
лікування COVID‑19.

4.2.2.4.2. Бафіломіцин А1
Бафіломіцин A1 (bafilomycin A1) має виражену противірусну 

дію. Він, інгібуючи ендосомальне закислення, пригнічує репліка-
цію IAV, SARS-CoV‑2. Однією з найважливіших властивостей 
бафіломіцину A1 вважають його здатність інгібувати процеси 
аутофагії, у тому числі і ксенофагії. Бафіломіцин A1 при високій 
концентрації пригнічує активність V-АТФази, що сприяє накопи-
ченню аутофагічних вакуолей і запускає Bax-залежний апоптоз 
клітин [183]. Бафіломіцин А1 викликає порушення структури та 
функцій лізосом, сприяючи накопиченню неестерифікованого 
холестерину в лізосомах [184].

4.2.2.5. Похідні артемізиніна
Артемізинін (artemisinin) – це природний сесквітерпеновий 

лактон, отриманий з трави однорічного полину (Artemisia annua 
L.). Застосування артемізиніна викликає протималярійні та 
протиракові ефекти. Найвідомішими похідними артемізиніна є 
дигідроартемізинін та артесунат (дигідроартемізинін‑12‑α-сук-
цинат) [185–187].

Артемізинін та його похідні, особливо артесунат, надають 
протизапальну дію, інгібуючи експресію генів цитокінів IL‑1β, 
IL‑6, IL‑17 і TNF-α, та антиоксидантну дію, пригнічуючи генера-
цію активних кисневмісних метаболітів і активуючи NFE2L2- та 
HO‑1‑асоційовані сигнальні шляхи [188; 189].

Результати переважної більшості досліджень свідчать про 
здатність артесунату індукувати аутофагію. Продемонстровано, 
що артесунат посилює аутофагію, знижуючи активність комплек-
су mTORC1 та підвищуючи експресію генів AMP-активованої 
протеїнкінази, BECLIN‑1, MAP1LC3/LC3 II/I [190; 191].

Артесунат має противірусну дію на різні вірусні агенти, 
у тому числі на герпесвіруси, коронавіруси, цитомегаловіруси, 
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віруси гепатиту B і C [192–194]. Згідно з результатами дослід-
ження Yuyong Zhou та співавт. [195], артесунат є найпотужнішим 
противірусним лікарським засобом із похідних артемізинінів 
проти SARS-CoV‑2. Призначення артесунату в дозі 60 мг двічі 
на день протягом 10 діб хворим на COVID‑19 суттєво знижує 
вірусне навантаження, скорочує тривалість захворювання та 
сприяє зниженню ризику несприятливого перебігу хвороби [196]. 
Вважають, що артесунат має значний терапевтичний потенціал, 
який дозволяє використовувати його при лікуванні респіраторних 
інфекційних захворювань [192; 197].

На сьогодні проводиться ІІ фаза клінічного випробування 
NCT04387240, що вивчає вплив артесунату на рівень вірусно-
го навантаження при COVID‑19 [https://www.clinicaltrials.gov/
(accessed on 2 January 2021)].
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ВИСНОВКИ

Р
озвиток ГРІ призводить до активації механізмів 
аутофагії та селективної форми аутофагії – ксено-
фагії, які забезпечують як ранню елімінацію рес-

піраторних патогенів, так і контроль за рівнем запалення тканин 
респіраторного тракту. Своєчасна та достатня за силою ініціація 
ксенофагії зумовлює ефективність ранньої елімінації патогенних 
респіраторних бактерій та вірусів з інфікованих клітин організму 
людини. У більшості випадків початок ГРІ супроводжується ініці-
ацією ксенофагії та аутофагії. Причинно-значущі мікроорганізми, 
що викликають ГРІ, можуть активувати ксенофагію як шляхом 
безпосереднього пригнічення PI3K/AKT/mTORC1‑сигнального 
шляху, так і шляхом збудження рецепторів, що беруть участь 
у рекогніції PAMP інфекційних агентів. Активація ксенофагії зни-
жує рівень бактеріального навантаження та реплікації геному 
вірусів в інфікованих клітинах. Також збудження TLR епітеліоцитів 
викликає продукування антимікробних пептидів, а макрофагів – 
індукцію канонічної ксенофагії та MAP1LC3/LC3‑пов’язаного 
фагоцитозу. Однак збудження PRR індукує механізми не тільки 
ксенофагії, аутофагії, але й запальної відповіді. Необхідно за-
значити, що ініціація ксенофагії пов’язана з ініціацією аутофагії, 
яка може призвести до деградації прозапальних молекул і, як 
наслідок, до пригнічення запальної реакції.

Потенційні можливості механізмів ксенофагії зумовлю-
ють імовірність виникнення та характер перебігу захворювань, 
викликаних бактеріями або вірусами. Під час інфекційних за-
хворювань, у тому числі й ГРІ, стадія елонгації фагофору, яка 
характеризується збільшенням площі мембрани фагофору 
та секвестрацією патогенних бактерій та вірусів, залежить від 
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ефективності специфічної взаємодії між продуктами життєдіяль-
ності патогенів та селективними аутофагічними рецепторами. 
Однак селективні аутофагічні рецептори беруть участь у ре-
когніції убіквітину, а не збудників респіраторних інфекцій. Тому 
для здійснення секвестрації інфекційних агентів та їх продуктів 
протеїни патогенів піддаються попередньому спеціалізованому 
убіквітинуванню. Порушення експресії конкретних специфічних 
E3‑лігаз, селективних аутофагічних рецепторів та протеїнів 
сімейства ATG8 (MAP1LC3/LC3 та GABARAP) може призвести 
до зниження рівня елімінації збудників та пролонгованої пер-
систенції конкретного патогену. Однак надмірне продукування 
селективних аутофагічних рецепторів може викликати розвиток 
запального процесу.

Завершальний етап ксенофагії та аутофагії характеризуєть-
ся формуванням аутофаголізосоми, ферменти якої лізують 
причинно-значущі патогенні мікроорганізми, сприяючи саногенезу 
ГРІ. Однак деякі аутофагічні мембранні структури під час інфек-
ційного процесу, викликаного вірусними агентами, можуть бути 
використані збудниками для підтримки своєї життєдіяльності. 
Таким чином, з одного боку, ксенофагія забезпечує ефективну 
деградацію патогенів, а з іншого – структури, що виникають при 
активації аутофагії, наприклад аутофагосоми, сприяють реплікації 
вірусного геному. Більшість респіраторно-тропних вірусів мають 
здатність пригнічувати злиття аутофагосоми та лізосоми, що 
призводить до підвищення кількості аутофагосом та, як наслідок, 
до посилення ефективності реплікації вірусів. Вірус-асоційоване 
пригнічення злиття амфісом та лізосом може стати причиною 
пролонгованої персистенції бактерій Streptococcus pneumoniae.

Лікування та профілактика ГРІ є складною проблемою, яка 
потребує нових інноваційних терапевтичних підходів, які б спри-
яли неускладненому перебігу захворювання. Медикаментозна 
модуляція активності одного з найдавніших механізмів першої 
лінії захисту від внутрішньоклітинних інфекційних агентів, які 
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мають тропність до тканин респіраторного тракту, може стати 
новим та ефективним напрямом лікування тяжких форм ГРІ.

Медикаментозна активація аутофагії та ксенофагії в період 
ініціації, особливо при ГРІ вірусного генезу, сприяє пригнічен-
ню реплікації вірусних агентів та критично впливає на проце-
си елімінації причинно-значущого збудника з організму хворо-
го. Водночас у випадках тяжкого перебігу ГРІ, які асоційовані 
з вираженим загальнозапальним синдромом, застосування 
препаратів, що інгібують механізми ініціації аутофагії та актив-
ність прозапальних механізмів також сприяє одужанню хворих 
при ГРІ. Підвищення активності ксенофагії сприяє елімінації 
патогенів, у той час як посилення аутофагії може призвести 
до зниження рівня запальної реакції за допомогою деградації 
образ-розпізнавальних рецепторів, факторів транскрипції NF-kB, 
AP‑1 та інших прозапальних чинників. Однак деякі респіраторні 
віруси мають здатність інгібувати злиття аутофагосом і лізосом, 
що призводить до збільшення кількості аутофагосом, в яких відб-
увається безперешкодна реплікація вірусів. Продемонстровано, 
що медикаментозна регуляція активності аутофагії та посилення 
ксенофагії сприяють позитивному результату ГРІ. На сьогодні 
для лікування ГРІ, які характеризуються тяжким перебігом та/
або високим ризиком несприятливого перебігу захворювання, 
пропонують використовувати модулятори активності механізмів 
завершального етапу аутофагії та активаторів ксенофагії.

Препарати, що впливають на механізми раннього періоду 
аутофагії та ксенофагії, представлені такими групами: 1) актива-
тори АМФ-активованої протеїнкінази; 2) модулятори активності 
mTORC1; 3) інгібітори фосфатидилінозитол‑3‑кінази; 4) інгібітори 
комплексу фосфатидилінозитол 3‑кінази III класу; 5) інгібітори 
комплексу серин-треонінової unc51‑подібної аутофагічної ак-
тивуючої кінази 1; 6) інгібітори кальпаїнів; 7) індуктори стресу 
ендоплазматичного ретикулуму; 8) інгібітори протеїну BCL‑2. 
Основними лікарськими засобами, які активують механізми 
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ініціації аутофагії і ксенофагії та сприяють одужанню хворих 
на ГРІ, є: активатори АМФ-активованої протеїнкінази, зокрема 
метформін, трегалоза; інгібітори активності mTORC1, такі як 
рапаміцин та його аналоги; інгібітори PI3K, крім вортманіну; 
інгібітори кальпаїнів, такі як кальпептин, лейпептин; інгібітор 
26S-протеасоми бортезоміб; інгібітори протеїну BCL‑2, у тому 
числі венетоклакс, навітоклакс, обатоклакс; індуктори стресу 
ендоплазматичного ретикулуму – брефельдін A, тапсигаргін, 
тунікаміцин та бортезоміб. При ГРІ, що перебігають із вираженим 
запальним процесом, можна рекомендувати застосування пре-
паратів, що пригнічують ініціацію аутофагії. Ця група лікарських 
засобів включає: активатори mTORC1 (гепарин, агоністи канабі-
ноїдних рецепторів, глюкокортикостероїди) та інгібітори АПФ2.

Найбільш вивченими модуляторами активності механізмів 
завершального етапу аутофагії є фітоагоністи фактору транс-
крипції TFEB (ресвератрол, фізетин, моринга A) та лізосомотропні 
агенти, представлені такими лікарськими групами: антагоністами 
двопорових каналів, інгібіторами гем-полімерази, інгібіторами 
тирозинкінази, макролідами, похідними артемізиніна. До препа-
ратів, що активують аутофагію, належать ресвератрол, фізетин, 
моринга A, тетрандрин, майже всі інгібітори рецепторних тиро-
зинкіназ, артесунат; а до препаратів, що пригнічують аутофагію 
за допомогою блокування злиття амфісоми та лізосоми – на-
рингенін, хлорохін та гідроксихлорохін, макролідні антибіотики, 
особливо азитроміцин, бафіломіцин A1. Активатори аутофагії 
більшою мірою сприяють ксенофагії та зниженню рівня запальної 
реакції у відповідь на інфікування респіраторними бактеріальни-
ми або вірусними агентами, а інгібітори аутофагії, як правило, 
перешкоджають інфікуванню коронавірусами клітин респіра-
торного тракту та пригнічують реплікацію РНК IAV, SARS-CoV‑2 
(макроліди). Ефективність модуляторів активності механізмів 
завершального етапу аутофагії переважно продемонстрована 
при лікуванні хворих на ГРІ, які викликані вірусами грипу та 
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коронавірусами. При бактеріально-асоційованих респіратор-
них інфекціях показана ефективність використання інгібіторів 
тирозинкіназ, таких як босутиніб та ібрутиніб. Деякі модулятори 
злиття амфісоми та лізосоми мають особливі властивості, які 
зумовлюють їх застосування в певних умовах. Зокрема, фітоін-
гібітор mTORC1‑асоційованого сигнального шляху – фізетин – 
має суттєву сенолітичну дію. Враховуючи цей бік механізму дії 
фізетину, його рекомендують використовувати при лікуванні 
важких форм COVID‑19 у людей похилого віку.

Необхідно наголосити, що на сьогодні майже не проведено 
досліджень профілактичних можливостей модуляторів аутофагії. 
У тому числі не вивчена ефективність застосування модуляторів 
аутофагії у хворих з рекурентними респіраторними інфекціями. 
Ми вважаємо, що в недалекому майбутньому медикаментозне 
управління активністю аутофагії та методи активації ксенофагії 
займуть своє гідне місце у лікарській практиці лікування тяжких 
та ускладнених форм ГРІ.
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